23,945 research outputs found

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    Performance of Cross-layer Design with Multiple Outdated Estimates in Multiuser MIMO System

    Get PDF
    By combining adaptive modulation (AM) and automatic repeat request (ARQ) protocol as well as user scheduling, the cross-layer design scheme of multiuser MIMO system with imperfect feedback is presented, and multiple outdated estimates method is proposed to improve the system performance. Based on this method and imperfect feedback information, the closed-form expressions of spectral efficiency (SE) and packet error rate (PER) of the system subject to the target PER constraint are respectively derived. With these expressions, the system performance can be effectively evaluated. To mitigate the effect of delayed feedback, the variable thresholds (VTs) are also derived by means of the maximum a posteriori method, and these VTs include the conventional fixed thresholds (FTs) as special cases. Simulation results show that the theoretical SE and PER are in good agreement with the corresponding simulation. The proposed CLD scheme with multiple estimates can obtain higher SE than the existing CLD scheme with single estimate, especially for large delay. Moreover, the CLD scheme with VTs outperforms that with conventional FTs

    Extrinsic Jensen-Shannon Divergence: Applications to Variable-Length Coding

    Full text link
    This paper considers the problem of variable-length coding over a discrete memoryless channel (DMC) with noiseless feedback. The paper provides a stochastic control view of the problem whose solution is analyzed via a newly proposed symmetrized divergence, termed extrinsic Jensen-Shannon (EJS) divergence. It is shown that strictly positive lower bounds on EJS divergence provide non-asymptotic upper bounds on the expected code length. The paper presents strictly positive lower bounds on EJS divergence, and hence non-asymptotic upper bounds on the expected code length, for the following two coding schemes: variable-length posterior matching and MaxEJS coding scheme which is based on a greedy maximization of the EJS divergence. As an asymptotic corollary of the main results, this paper also provides a rate-reliability test. Variable-length coding schemes that satisfy the condition(s) of the test for parameters RR and EE, are guaranteed to achieve rate RR and error exponent EE. The results are specialized for posterior matching and MaxEJS to obtain deterministic one-phase coding schemes achieving capacity and optimal error exponent. For the special case of symmetric binary-input channels, simpler deterministic schemes of optimal performance are proposed and analyzed.Comment: 17 pages (two-column), 4 figures, to appear in IEEE Transactions on Information Theor
    • …
    corecore