4,268 research outputs found

    Distributed Adaptive Attitude Synchronization of Multiple Spacecraft

    Full text link
    This paper addresses the distributed attitude synchronization problem of multiple spacecraft with unknown inertia matrices. Two distributed adaptive controllers are proposed for the cases with and without a virtual leader to which a time-varying reference attitude is assigned. The first controller achieves attitude synchronization for a group of spacecraft with a leaderless communication topology having a directed spanning tree. The second controller guarantees that all spacecraft track the reference attitude if the virtual leader has a directed path to all other spacecraft. Simulation examples are presented to illustrate the effectiveness of the results.Comment: 13 pages, 11 figures. To appear in SCIENCE CHINA Technological Science

    Series active variable geometry suspension application to comfort enhancement

    Get PDF
    This paper explores the potential of the Series Active Variable Geometry Suspension (SAVGS) for comfort and road holding enhancement. The SAVGS concept introduces significant nonlinearities associated with the rotation of the mechanical link that connects the chassis to the spring-damper unit. Although conventional linearization procedures implemented in multi-body software packages can deal with this configuration, they produce linear models of reduced applicability. To overcome this limitation, an alternative linearization approach based on energy conservation principles is proposed and successfully applied to one corner of the car, thus enabling the use of linear robust control techniques. An H∞ controller is synthesized for this simplified quarter-car linear model and tuned based on the singular value decomposition of the system's transfer matrix. The proposed control is thoroughly tested with one-corner and full-vehicle nonlinear multi-body models. In the SAVGS setup, the actuator appears in series with the passive spring-damper and therefore it would typically be categorized as a low bandwidth or slow active suspension. However, results presented in this paper for an SAVGS-retrofitted Grand Tourer show that this technology has the potential to also improve the high frequency suspension functions such as comfort and road holding

    Flight controller synthesis via deep reinforcement learning

    Get PDF
    Traditional control methods are inadequate in many deployment settings involving autonomous control of Cyber-Physical Systems (CPS). In such settings, CPS controllers must operate and respond to unpredictable interactions, conditions, or failure modes. Dealing with such unpredictability requires the use of executive and cognitive control functions that allow for planning and reasoning. Motivated by the sport of drone racing, this dissertation addresses these concerns for state-of-the-art flight control by investigating the use of deep artificial neural networks to bring essential elements of higher-level cognition to bear on the design, implementation, deployment, and evaluation of low level (attitude) flight controllers. First, this thesis presents a feasibility analyses and results which confirm that neural networks, trained via reinforcement learning, are more accurate than traditional control methods used by commercial uncrewed aerial vehicles (UAVs) for attitude control. Second, armed with these results, this thesis reports on the development and release of an open source, full solution stack for building neuro-flight controllers. This stack consists of a tuning framework for implementing training environments (GymFC) and firmware for the world’s first neural network supported flight controller (Neuroflight). GymFC’s novel approach fuses together the digital twinning paradigm with flight control training to provide seamless transfer to hardware. Third, to transfer models synthesized by GymFC to hardware, this thesis reports on the toolchain that has been released for compiling neural networks into Neuroflight, which can be flashed to off-the-shelf microcontrollers. This toolchain includes detailed procedures for constructing a multicopter digital twin to allow the research and development community to synthesize flight controllers unique to their own aircraft. Finally, this thesis examines alternative reward system functions as well as changes to the software environment to bridge the gap between simulation and real world deployment environments. The design, evaluation, and experimental work summarized in this thesis demonstrates that deep reinforcement learning is able to be leveraged for the design and implementation of neural network controllers capable not only of maintaining stable flight, but also precision aerobatic maneuvers in real world settings. As such, this work provides a foundation for developing the next generation of flight control systems

    Automatic Flight Control Systems

    Get PDF
    The history of flight control is inseparably linked to the history of aviation itself. Since the early days, the concept of automatic flight control systems has evolved from mechanical control systems to highly advanced automatic fly-by-wire flight control systems which can be found nowadays in military jets and civil airliners. Even today, many research efforts are made for the further development of these flight control systems in various aspects. Recent new developments in this field focus on a wealth of different aspects. This book focuses on a selection of key research areas, such as inertial navigation, control of unmanned aircraft and helicopters, trajectory control of an unmanned space re-entry vehicle, aeroservoelastic control, adaptive flight control, and fault tolerant flight control. This book consists of two major sections. The first section focuses on a literature review and some recent theoretical developments in flight control systems. The second section discusses some concepts of adaptive and fault-tolerant flight control systems. Each technique discussed in this book is illustrated by a relevant example

    Neuroflight: Next Generation Flight Control Firmware

    Full text link
    Little innovation has been made to low-level attitude flight control used by uncrewed aerial vehicles (UAVs), which still predominantly uses the classical PID controller. In this work we introduce Neuroflight, the first open source neuro-flight controller firmware. We present our toolchain for training a neural network in simulation and compiling it to run on embedded hardware. Challenges faced jumping from simulation to reality are discussed along with our solutions. Our evaluation shows the neural network can execute at over 2.67kHz on an Arm Cortex-M7 processor and flight tests demonstrate a quadcopter running Neuroflight can achieve stable flight and execute aerobatic maneuvers

    Robust dynamic feedback and variable structure adaptive control of rigid and flexible spacecraft

    Full text link
    This thesis presents control systems design for control of rigid and flexible spacecraft in the presence of parameter uncertainty and disturbance inputs. Two kinds of control systems are designed for the control of rigid spacecraft. For the design of the first controller, Rodrigues parameters and modified Rodrigues parameters are used to describe the orientation of spacecraft. A dynamic decoupling attitude control law is derived for the tracking of reference attitude trajectories. The singular perturbation theory is used for the stability analysis of the closed-loop system. For the synthesis of the control law, only the attitude error is required. The second control law for rigid spacecraft is derived choosing Euler angles as output variables, and using a similar design procedure as used for the first controller. Finally, based on the variable structure model reference adaptive control (VS-MRAC) theory, a new control system for the control of an orbiting flexible spacecraft is designed. For the derivation of control law, it is assumed that the parameters and the structure of the nonlinear functions in the model are unknown. It is shown that in the closed-loop system including the VS-MRAC system designed using bounds on uncertain functions, the pitch angle tracks given reference trajectory and the vibration is suppressed

    Autonomous landing control of highly flexible aircraft based on Lidar preview in the presence of wind turbulence

    Get PDF
    This paper investigates preview-based autonomous landing control of a highly flexible flying wing model using short range Lidar wind measurements in the presence of wind turbulence. The preview control system is developed based on a reduced-order linear aeroelastic model and employs a two-loop control scheme. The outer loop employs the LADRC (linear active disturbance rejection control) and PI algorithms to track the reference landing trajectory and vertical speed, respectively, and to generate the attitude angle command. This is then used by the inner-loop using H∞ preview control to compute the control inputs to the actuators (control flaps and thrust). A landing trajectory navigation system is designed to generate real-time reference commands for the landing control system. A Lidar (light detection and ranging) simulator is developed to measure the wind disturbances at a distance in front of the aircraft, which are provided to the inner-loop H∞ preview controller as prior knowledge to improve control performance. Simulation results based on the full-order nonlinear flexible aircraft dynamic model show that the preview-based landing control system is able to land the flying wing effectively and safely, showing better control performance than the baseline landing control system (without preview) with respect to landing effectiveness and disturbance rejection. The control system’s robustness to measurement error in the Lidar system is also demonstrated
    • …
    corecore