11,161 research outputs found

    Rudder roll stabilization for ships

    Get PDF
    This paper describes the design of an autopilot for rudder roll stabilization for ships. This autopilot uses the rudder not only for course keeping but also for reduction of the roll. The system has a series of properties which make the controller design far from straightforward: the process has only one input (the rudder angle) and two outputs (the heading and the roll angle); the transfer from rudder to roll is non-minimum-phase; because large and high-frequency rudder motions are necessary, the non-linearities of the steering machine cannot be disregarded; the disturbances caused by the waves vary considerably in amplitude and frequency spectrum.\ud \ud In order to solve these problems a new approach to the LQG method has been developed. The control algorithms were tested by means of computer simulations, scale-model experiments and full-scale trials at sea. The results indicate that a rudder roll stabilization system is able to reduce the roll as well as a conventional fin stabilization system, while it requires less investments. Based on the results obtained in this project the Royal Netherlands Navy has decided to implement rudder roll stabilization on a series of ships under construction at this moment

    A MRAS-based Learning Feed-forward Controller

    Get PDF
    Inspired by learning feed–forward control structures, this paper considers the adaptation of the parameters of a model–reference based learning feed–forward controller that realizes an inverse model of the process. The actual process response is determined by a setpoint generator. For linear systems it can be proved that the controlled system is asymptotically stable in the sense of Liapunov. Compared with more standard model reference configurations this system has a superior performance. It is fast, robust and relatively insensitive for noisy measurements. Simulations with an arbitrary second–order process and with a model of a typical fourth–ordermechatronics process demonstrate this

    Optimal Universal Controllers for Roll Stabilization

    Get PDF
    Roll stabilization is an important problem of ship motion control. This problem becomes especially difficult if the same set of actuators (e.g. a single rudder) has to be used for roll stabilization and heading control of the vessel, so that the roll stabilizing system interferes with the ship autopilot. Finding the "trade-off" between the concurrent goals of accurate vessel steering and roll stabilization usually reduces to an optimization problem, which has to be solved in presence of an unknown wave disturbance. Standard approaches to this problem (loop-shaping, LQG, HH_{\infty}-control etc.) require to know the spectral density of the disturbance, considered to be a \colored noise". In this paper, we propose a novel approach to optimal roll stabilization, approximating the disturbance by a polyharmonic signal with known frequencies yet uncertain amplitudes and phase shifts. Linear quadratic optimization problems in presence of polyharmonic disturbances can be solved by means of the theory of universal controllers developed by V.A. Yakubovich. An optimal universal controller delivers the optimal solution for any uncertain amplitudes and phases. Using Marine Systems Simulator (MSS) Toolbox that provides a realistic vessel's model, we compare our design method with classical approaches to optimal roll stabilization. Among three controllers providing the same quality of yaw steering, OUC stabilizes the roll motion most efficiently

    MODEL REFERENCE ADAPTIVE CONTROL-BASED GENETIC ALGORITHM DESIGN FOR HEADING SHIP MOTION

    Get PDF
    In this paper, the heading control of a large ship is enhanced with a specific end goal, to check the unwanted impact of the waves on the actuator framework. The Nomoto model is investigated to describe the ship’s guiding progression. First and second order models are considered here. The viability of the models is examined based on the principal properties of the Nomoto model. Different controllers are proposed, these are Proportional Integral Derivative (PID), Linear Quadratic Regulator (LQR) and Model Reference Adaptive Control Genetic optimization Algorithm (MRAC-GA) for a ship heading control. The results show that the MRAC-GA controller provides the best results to satisfy the design requirements. The Matlab/Simulink tool is utilized to demonstrate the proposed arrangement in the control loop

    Genetic programming for the automatic design of controllers for a surface ship

    Get PDF
    In this paper, the implementation of genetic programming (GP) to design a contoller structure is assessed. GP is used to evolve control strategies that, given the current and desired state of the propulsion and heading dynamics of a supply ship as inputs, generate the command forces required to maneuver the ship. The controllers created using GP are evaluated through computer simulations and real maneuverability tests in a laboratory water basin facility. The robustness of each controller is analyzed through the simulation of environmental disturbances. In addition, GP runs in the presence of disturbances are carried out so that the different controllers obtained can be compared. The particular vessel used in this paper is a scale model of a supply ship called CyberShip II. The results obtained illustrate the benefits of using GP for the automatic design of propulsion and navigation controllers for surface ships

    Linear motor motion control using a learning feedforward controller

    Get PDF
    The design and realization of an online learning motion controller for a linear motor is presented, and its usefulness is evaluated. The controller consists of two components: (1) a model-based feedback component, and (2) a learning feedforward component. The feedback component is designed on the basis of a simple second-order linear model, which is known to have structural errors. In the design, an emphasis is placed on robustness. The learning feedforward component is a neural-network-based controller, comprised of a one-hidden-layer structure with second-order B-spline basis functions. Simulations and experimental evaluations show that, with little effort, a high-performance motion system can be obtained with this approach
    corecore