2,574 research outputs found

    Performance Analysis and Optimization of Sparse Matrix-Vector Multiplication on Modern Multi- and Many-Core Processors

    Full text link
    This paper presents a low-overhead optimizer for the ubiquitous sparse matrix-vector multiplication (SpMV) kernel. Architectural diversity among different processors together with structural diversity among different sparse matrices lead to bottleneck diversity. This justifies an SpMV optimizer that is both matrix- and architecture-adaptive through runtime specialization. To this direction, we present an approach that first identifies the performance bottlenecks of SpMV for a given sparse matrix on the target platform either through profiling or by matrix property inspection, and then selects suitable optimizations to tackle those bottlenecks. Our optimization pool is based on the widely used Compressed Sparse Row (CSR) sparse matrix storage format and has low preprocessing overheads, making our overall approach practical even in cases where fast decision making and optimization setup is required. We evaluate our optimizer on three x86-based computing platforms and demonstrate that it is able to distinguish and appropriately optimize SpMV for the majority of matrices in a representative test suite, leading to significant speedups over the CSR and Inspector-Executor CSR SpMV kernels available in the latest release of the Intel MKL library.Comment: 10 pages, 7 figures, ICPP 201

    An efficient multi-core implementation of a novel HSS-structured multifrontal solver using randomized sampling

    Full text link
    We present a sparse linear system solver that is based on a multifrontal variant of Gaussian elimination, and exploits low-rank approximation of the resulting dense frontal matrices. We use hierarchically semiseparable (HSS) matrices, which have low-rank off-diagonal blocks, to approximate the frontal matrices. For HSS matrix construction, a randomized sampling algorithm is used together with interpolative decompositions. The combination of the randomized compression with a fast ULV HSS factorization leads to a solver with lower computational complexity than the standard multifrontal method for many applications, resulting in speedups up to 7 fold for problems in our test suite. The implementation targets many-core systems by using task parallelism with dynamic runtime scheduling. Numerical experiments show performance improvements over state-of-the-art sparse direct solvers. The implementation achieves high performance and good scalability on a range of modern shared memory parallel systems, including the Intel Xeon Phi (MIC). The code is part of a software package called STRUMPACK -- STRUctured Matrices PACKage, which also has a distributed memory component for dense rank-structured matrices

    Topology-aware optimization of big sparse matrices and matrix multiplications on main-memory systems

    Get PDF
    Since data sizes of analytical applications are continuously growing, many data scientists are switching from customized micro-solutions to scalable alternatives, such as statistical and scientific databases. However, many algorithms in data mining and science are expressed in terms of linear algebra, which is barely supported by major database vendors and big data solutions. On the other side, conventional linear algebra algorithms and legacy matrix representations are often not suitable for very large matrices. We propose a strategy for large matrix processing on modern multicore systems that is based on a novel, adaptive tile matrix representation (AT MATRIX). Our solution utilizes multiple techniques inspired from database technology, such as multidimensional data partitioning, cardinality estimation, indexing, dynamic rewrites, and many more in order to optimize the execution time. Based thereon we present a matrix multiplication operator ATMULT, which outperforms alternative approaches. The aim of our solution is to overcome the burden for data scientists of selecting appropriate algorithms and matrix storage representations. We evaluated AT MATRIX together with ATMULT on several real-world and synthetic random matrices

    Doctor of Philosophy

    Get PDF
    dissertationEmerging trends such as growing architectural diversity and increased emphasis on energy and power efficiency motivate the need for code that adapts to its execution context (input dataset and target architecture). Unfortunately, writing such code remains difficult, and is typically attempted only by a small group of motivated expert programmers who are highly knowledgeable about the relationship between software and its hardware mapping. In this dissertation, we introduce novel abstractions and techniques based on automatic performance tuning that enable both experts and nonexperts (application developers) to produce adaptive code. We present two new frameworks for adaptive programming: Nitro and Surge. Nitro enables expert programmers to specify code variants, or alternative implementations of the same computation, together with meta-information for selecting among them. It then utilizes supervised classification to select an optimal code variant at runtime based on characteristics of the execution context. Surge, on the other hand, provides a high-level nested data-parallel programming interface for application developers to specify computations. It then employs a two-level mechanism to automatically generate code variants and then tunes them using Nitro. The resulting code performs on par with or better than handcrafted reference implementations on both CPUs and GPUs. In addition to abstractions for expressing code variants, this dissertation also presents novel strategies for adaptively tuning them. First, we introduce a technique for dynamically selecting an optimal code variant at runtime based on characteristics of the input dataset. On five high-performance GPU applications, variants tuned using this strategy achieve over 93% of the performance of variants selected through exhaustive search. Next, we present a novel approach based on multitask learning to develop a code variant selection model on a target architecture from training on different source architectures. We evaluate this approach on a set of six benchmark applications and a collection of six NVIDIA GPUs from three distinct architecture generations. Finally, we implement support for combined code variant and frequency selection based on multiple objectives, including power and energy efficiency. Using this strategy, we construct a GPU sorting implementation that provides improved energy and power efficiency with less than a proportional drop in sorting throughput

    Sparse matrix-vector multiplication on GPGPU clusters: A new storage format and a scalable implementation

    Get PDF
    Sparse matrix-vector multiplication (spMVM) is the dominant operation in many sparse solvers. We investigate performance properties of spMVM with matrices of various sparsity patterns on the nVidia "Fermi" class of GPGPUs. A new "padded jagged diagonals storage" (pJDS) format is proposed which may substantially reduce the memory overhead intrinsic to the widespread ELLPACK-R scheme. In our test scenarios the pJDS format cuts the overall spMVM memory footprint on the GPGPU by up to 70%, and achieves 95% to 130% of the ELLPACK-R performance. Using a suitable performance model we identify performance bottlenecks on the node level that invalidate some types of matrix structures for efficient multi-GPGPU parallelization. For appropriate sparsity patterns we extend previous work on distributed-memory parallel spMVM to demonstrate a scalable hybrid MPI-GPGPU code, achieving efficient overlap of communication and computation.Comment: 10 pages, 5 figures. Added reference to other recent sparse matrix format

    Density-Aware Linear Algebra in a Column-Oriented In-Memory Database System

    Get PDF
    Linear algebra operations appear in nearly every application in advanced analytics, machine learning, and of various science domains. Until today, many data analysts and scientists tend to use statistics software packages or hand-crafted solutions for their analysis. In the era of data deluge, however, the external statistics packages and custom analysis programs that often run on single-workstations are incapable to keep up with the vast increase in data volume and size. In particular, there is an increasing demand of scientists for large scale data manipulation, orchestration, and advanced data management capabilities. These are among the key features of a mature relational database management system (DBMS). With the rise of main memory database systems, it now has become feasible to also consider applications that built up on linear algebra. This thesis presents a deep integration of linear algebra functionality into an in-memory column-oriented database system. In particular, this work shows that it has become feasible to execute linear algebra queries on large data sets directly in a DBMS-integrated engine (LAPEG), without the need of transferring data and being restricted by hard disc latencies. From various application examples that are cited in this work, we deduce a number of requirements that are relevant for a database system that includes linear algebra functionality. Beside the deep integration of matrices and numerical algorithms, these include optimization of expressions, transparent matrix handling, scalability and data-parallelism, and data manipulation capabilities. These requirements are addressed by our linear algebra engine. In particular, the core contributions of this thesis are: firstly, we show that the columnar storage layer of an in-memory DBMS yields an easy adoption of efficient sparse matrix data types and algorithms. Furthermore, we show that the execution of linear algebra expressions significantly benefits from different techniques that are inspired from database technology. In a novel way, we implemented several of these optimization strategies in LAPEG’s optimizer (SpMachO), which uses an advanced density estimation method (SpProdest) to predict the matrix density of intermediate results. Moreover, we present an adaptive matrix data type AT Matrix to obviate the need of scientists for selecting appropriate matrix representations. The tiled substructure of AT Matrix is exploited by our matrix multiplication to saturate the different sockets of a multicore main-memory platform, reaching up to a speed-up of 6x compared to alternative approaches. Finally, a major part of this thesis is devoted to the topic of data manipulation; where we propose a matrix manipulation API and present different mutable matrix types to enable fast insertions and deletes. We finally conclude that our linear algebra engine is well-suited to process dynamic, large matrix workloads in an optimized way. In particular, the DBMS-integrated LAPEG is filling the linear algebra gap, and makes columnar in-memory DBMS attractive as efficient, scalable ad-hoc analysis platform for scientists
    • …
    corecore