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ABSTRACT
The High-Performance Computing ecosystem consists of a
large variety of execution platforms that demonstrate a wide
diversity in hardware characteristics such as CPU architec-
ture, memory organization, interconnection network, accel-
erators, etc. This environment also presents a number of
hard boundaries (walls) for applications which limit soft-
ware development (parallel programming wall), performance
(memory wall, communication wall) and viability (power
wall). The only way to survive in such a demanding en-
vironment is by adaptation. In this paper we discuss how
dynamic information collected during the execution of an
application can be utilized to adapt the execution context
and may lead to performance gains beyond those provided
by static information and compile-time adaptation. We con-
sider specialization based on dynamic information like user
input, architectural characteristics such as the memory hier-
archy organization, and the execution profile of the applica-
tion as obtained from the execution platform’s performance
monitoring units. One of the challenges of future execution
platforms is to allow the seamless integration of these var-
ious kinds of information with information obtained from
static analysis (either during ahead-of-time or just-in-time)
compilation. We extend the notion of information-driven
adaptation and outline the architecture of an infrastructure
designed to enable information flow and adaptation through-
out the life-cycle of an application.
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1. MOTIVATION
The proliferation of multicore technology and the com-

moditization of High-Performance Computing (HPC) sys-
tems have changed the parallel computing landscape. Mul-
tiple cores within a node exacerbate the problem of utilizing
resources efficiently. For instance, executing threads aggres-
sively compete for common system resources such as mem-
ory and I/O bandwidth. Memory and interconnect tech-
nologies cannot keep pace with processor technology, and
thus many types of applications have hit a memory [27] or
communication wall. Numerous current HPC codes fail to
scale beyond a few hundred cores, yet exascale systems will
contain over a million cores.

One approach to deal with this situation might exclusively
focus on the target system and attempt to develop codes
that are “perfect” for a given target system. This approach
requires a complete understanding of the low-level hardware
and architectural features (often not completely disclosed
by processor or system vendors) and then would produce
codes that utilize a system’s potential while at the same
time avoiding pitfalls and hotspots. But such an approach
would be viable only in a world dominated by one (or at
most few) stable HPC architecture(s). However, this world
does not exist and is unlikely to appear. Today’s execution



platforms exhibit a wide diversity in hardware character-
istics with different CPU architectures, memory organiza-
tions, interconnection networks, accelerators, and other fea-
tures. Most likely, future exascale systems will share this
characteristic with today’s systems. Developing and opti-
mizing codes for each hardware singularity would require
an enormous programming effort by application domain ex-
perts, an approach that would hit the parallel programming
wall. Even if the programming aspects of exascale systems
are stable and identical, there is another reason to look be-
yond an approach that takes a static view of the target sys-
tem. As exascale systems scale to millions of processors, the
energy and cooling costs will pose a power wall (or power
ceiling), and future software systems must include strategies
to manage the power/energy budget.
These metaphorical walls represent physical limitations

with respect to money, energy, and time (in terms of both
human effort and machine occupancy). Traditional software
development and execution practices are reaching a hard
limit, and even existing petascale systems fail to deliver sus-
tained petascale performance to a large number of applica-
tions. We argue that we need a radical change in the way
we develop, execute and maintain software to effectively uti-
lize existing systems and, more importantly, proceed to the
exascale era.

2. THE (EXECUTION) ENVIRONMENT
The need for cost-effective supercomputers drives the com-

moditization of parallel systems, and growing research com-
munities and industrial markets now have access to the“heavy
metal” hardware that was once the exclusive property of the
scientific HPC community. Parallel execution platforms pro-
liferate within small research labs, SMEs, hospitals, schools,
and universities.
The TOP500 list of supercomputers [22] includes diverse

systems ranging from custom-made, finely tuned platforms
to large clusters of cheap, off-the-shelf components. These
systems span large design spaces with respect to internal
CPU architecture, number of cores, memory subsystem, in-
terconnection network technology and topology, and hard-
ware acceleration support. A closer look at the list reveals
several interesting issues:

- There are 33 different processor types (although the
list is dominated by Xeon-based systems);

- There are more than 20 different interconnection net-
works, some of them custom-made;

- The number of cores per system ranges from a few
thousands to a quarter of a million;

- 4 out of the 7 petaflop systems base their high perfor-
mance on hardware acceleration;

- More than half of the systems rely on x86-based nodes
that communicate via inexpensive Gbit Ethernet.

The last remark is what we call the TOP500 paradox :
although the list includes the 500 most powerful HPC sys-
tems worldwide, it is dominated by a system architecture
incapable of delivering peak performance to large classes
of HPC applications sensitive to communication and thus
bound by network bandwidth and especially latency.

The execution environment is not pleasant for many appli-
cations at the small scale of multicore nodes either. Again,
here one can meet a large variety of processor architectures
and memory hierarchy organizations. However, no config-
uration has been successful in providing good scalability to
data-intensive applications that are bound by memory band-
width and/or latency.

This is clearly an unfriendly environment for large classes
of applications that require high performance but are not
capable of obtaining it. Quite importantly though, this is
not only a matter of hard performance bounds. Subopti-
mal codes that naively request all available system resources
may end up with poor (even negative) scalability and, at
the same time, waste energy. Regardless of the many differ-
ences across systems, one unifying limitation characterizes
platforms ranging from supercomputers down to battery-
powered smartphones: energy costs and distribution/dis-
sipation considerations increasingly constrain the problems
we can solve. These trends point to a growing need to move
from HPC to HEC: High-Efficiency Computing.

3. ADAPT OR BECOME EXTINCT
In a diverse environment with many boundaries and strong

requirements, applications need to execute efficiently. A na-
ture-inspired way to meet this challenge is by adaptation:
applications need to be able to adapt both to current and
future execution platforms. Unfortunately, effective adapta-
tion is not a straightforward process. We need to substan-
tially change all stages in the life-cycle of an application, in-
cluding its design, implementation, compilation, execution,
maintenance, etc.

However, the good news is that research over the last
decade has identified several opportunities for adaptation,
i.e. several application features that can be parameterized
and tuned, leading to significant performance gains or en-
ergy savings. We can find adaptation opportunities at the
highest application level when selecting among available al-
gorithms [3, 23], in application-specific parameters [15], in
the parallelization stage (e.g., topology of processing ele-
ments) [11], in system software (e.g. communication li-
braries) [16], in loop or compiler optimizations (e.g., block
size, unroll factor, optimization flags) [1], in the operating
system (e.g., scheduling policies) [6], in the run-time system
(e.g., concurrency level) [8, 21], and in hardware (e.g., cache
coherence protocol, operation frequency) [25].

Autotuning libraries have been a success story for adap-
tation. Researchers and library developers have established
that performing a compile or installation time search over
the possible combinations of algorithms and data structures
for a given kernel can be used, along with heuristics, to find
(near) optimal codes. Although the cost of tuning can be
expensive, once chosen, a kernel may be used thousands of
times. The class of frameworks that support such a search
are known as autotuners. Autotuners provide a portable
and effective method for tuning over the plethora of opti-
mizations available on today’s multicore architectures. This
is the case of ATLAS [26] for dense linear algebra, OSKI [24]
for sparse linear algebra, FFTW [10] for fast Fourier trans-
forms and Spiral [18] for digital image processing that are
widely used by the scientific and engineering communities.

The effectiveness of adaptation is closely coupled to the
quality of the information used. Compile-time adaptation
has been successful since it has a central –though partial–



Figure 1: Distribution of substructures in 15 matrices. DUx represents a structure with non-zero elements
close enough, so that their distance can be represented with x bits. Numbers in parentheses correspond to
constant distances between elements in the relevant direction. brow/bco are two-dimensional dense blocks
of the shape shown in the parenthesis.

view of both the application and the execution platform:
it can collect information for the application through static
analysis and can work with an approximate model of the
execution platform as well. However, since a lot of informa-
tion about the actual execution environment is not known at
compile time (actually, sometimes only the ISA is known),
we argue that there is a lot more to do as soon as this in-
formation becomes available. We illustrate this view in the
next section, where we show examples of effective adaptation
when utilizing information on the user input, the architec-
tural features, and the execution profile of the application.

4. ADAPTING AT RUNTIME
In this section we discuss effective approaches of run-

time adaptation. We show how we can utilize three valu-
able sources of information that become available only af-
ter static analysis is done: user input, architectural parame-
ters, and information collected from performance monitoring
units (PMU) of the execution platform.

4.1 Specialization on User Input
An important and ubiquitous computational kernel with

streaming memory access pattern is the Sparse Matrix-Vector
multiplication (SpMV). It is used in a large variety of appli-
cations in scientific computing and engineering. For exam-
ple, it is the basic operation of iterative solvers such as Con-
jugate Gradient (CG) and Generalized Minimum Residual
(GMRES), which are extensively used to solve sparse linear
systems resulting from the simulation of physical processes
described by partial differential equations [20]. Furthermore,
SpMV is a member of one of the “seven dwarfs” [4].
The distinguishing characteristic of sparse matrices is that

they are populated by a large number of zeros, making it
highly inefficient to perform operations using dense array
structures. Special storage schemes are used instead, which
target both the storage space costs of the matrix as well
as the efficient execution of various operations by perform-

ing only the necessary computations. Thus, the common
approach is to store only the non-zero values of the matrix
and employ additional indexing information representing the
position of these values. The most commonly used storage
format for sparse matrices is the Compressed Sparse Row
(CSR) format [5, 20]. CSR uses three arrays to store the
non-zero arithmetic values, indexes to the columns of the
original matrix for each value, and the number of non-zero
elements per row.

Past work [12, 2] has identified the memory subsystem as
the main performance bottleneck of the SpMV kernel. Obvi-
ously, this problem becomes more severe in a multithreaded
environment, where multiple cores access the main memory.
An approach for alleviating this problem is the reduction of
the data volume accessed during the execution of the kernel.
A target for data reduction is the indexing structure of the
sparse matrix. Sparse matrices typically arise from regu-
lar computational domains in simulation problems and thus
include several regularities in their structure. Such regular-
ities can be one-dimensional dense sub-blocks (horizontal,
vertical, diagonal), two-dimensional dense sub-blocks, areas
of non-zeros with constant distances, or areas of non-zeros
where elements are “quite close together”. Figure 1 illus-
trates this situation in 15 matrices taken from Tim Davis’
collection [9]. There exist a lot of different substructures
in this matrix set, and quite interestingly one matrix (ra-
jat31) has 20% of its non-zero elements in diagonals with
distance 11.

CSR is a structure-agnostic storage format consuming one
index per non-zero element. More efficient storage formats
have been proposed that keep one index per substructure:
BCSR [19] used in OSKI keeps one index per 2-dimensional
block of constant size r × c, and CSR-DU [13] exploits sub-
structures along the same row. CSX [14] is the most aggres-
sive storage scheme capable of mining all the substructures
discussed in the previous paragraph. Figure 2 shows the
speedups (over serial SpMV with CSR) attained by these
four storage formats on an 8-core platform with 2 Intel Xeon



Figure 2: Average speedup of SpMV for various
storage formats.

E5335 processors. We can see that with the elaborate anal-
ysis of user input performed by CSX, the SpMV kernel can
be adapted to achieve on average 33% better performance
compared to the standard approach (CSR).
These are very encouraging results towards adapting data-

intensive applications for multicore platforms. Of course,
the kernel remains memory-bound and scalability is not im-
pressive after CSX either. Note, however, that all afore-
mentioned optimization approaches target only the indexing
structure of the sparse matrix, which is typically approxi-
mately 1/3 of the kernel’s working set. In that respect, the
performance improvement attained by CSX can be consid-
ered an important achievement. From the adaptation point
of view, we see that user data carry a lot of valuable infor-
mation that cannot be utilized until load time or later. So if
we can pay a cost of analyzing and possibly pre-processing
the user data as soon as this information becomes available,
then we can achieve important benefits.

4.2 Utilizing Architectural Parameters and
PMUs

As the number of processors per node is increased and
the number of cores per processor grows, architects resort
to non-uniform memory access (NUMA) designs that are
able to provide a higher aggregate memory bandwidth than
can be obtained in simpler memory systems. NUMA-based
multicore processors integrate one (or more) memory con-
troller(s) with each processor, and the physical memory space
is divided between processors. Each processor has direct
access to its local share of the memory space via its on-
chip memory controller and has access to non-local (remote)
memory via a cross-chip interconnect. Such multiprocessor
configurations have non-uniform access times since remote
requests are subject to various overheads. Remote memory
accesses (in current small-scale multiprocessors with point-
to-point connections between nodes) may cost 1.5 to 2 times
more than local memory accesses. Large-scale multiproces-
sors that employ more sophisticated interconnect structures
are likely to experience a higher cost. Consequently, it is
highly desirable to enforce data locality, e.g., to place pro-
cesses close to their data.
The different access times to memory are one aspect that

complicates mapping of applications onto a system. In ad-

dition, modern architectures exhibit another key character-
istic: the cores of a processor share one or more levels of the
cache hierarchy. Resource contention for shared caches can
be a source of severe performance degradation [7]. Thus,
optimizing only for data locality can counteract the benefits
of cache contention avoidance and vice versa. Since oper-
ating system schedulers might balance only the CPU load
and do not account for data locality or cache contention, a
process might be mapped to one node while the data for this
process resides in the memory connected to another node.
Consequently, the process will use the memory system in
very inefficient ways. Thus, operating system scheduling is
a good place to alleviate resource contention and increase
data locality, targeting a tradeoff between them.

To enforce a cache-conscious scheduling policy for NU-
MAs, we need information about architectural parameters
such as cache sharing and a characterization of the applica-
tions. The latter can be extracted from the PMU of modern
microprocessors. In particular, we need to know if an appli-
cation is memory or CPU-bound and to have an estimate of
its cost when accessing its data remotely.

Majo and Gross [17] discuss two NUMA-aware schedul-
ing approaches: the first one (maximum-local) targets only
locality increases, by prioritizing the allocation of processes
that suffer from accessing remote memory so that these pro-
cesses are close to their data. The second one called N-
MASS (NUMA-Multicore-Aware Scheduling Scheme) adapts
the scheduling of maximum-local when this strategy fails to
cope with cache contention. For example, N-MASS may
decide to separate one or more CPU-bound processes from
their data to leave space at the (previously) shared cache for
memory-bound processes. N-MASS improves performance
up to 32%, and 7% on average, over the default setup in
current Linux implementations.

5. TOWARDS A HOLISTIC ADAPTATION
APPROACH

There is a lot of room for more innovation towards adap-
tive parallel software. The key observation towards more
effective solutions is that more information must be made
available throughout an application’s life-cycle to enable the
collaboration between the application, the run-time system,
and the hardware. The objective of this collaboration is to
seamlessly manage the resources to deliver consistent, pre-
dictable, energy-efficient performance across the increasingly
diverse computing platforms on which we rely. Valuable
information can flow from the compiler by static program
analysis, the runtime system by collecting profiling informa-
tion, the hardware by exploiting its performance monitoring
facilities, and, of course, by the domain experts. Interest-
ingly, this information becomes available at different stages
in the life-cycle of an application.

Current approaches do not exploit this information in
combined ways, separating its utilization at the stages of
design/implementation, compilation and runtime. For ex-
ample, the successful approaches discussed in the previous
section do not utilize information about the algorithm at the
higher level, and thus they are not able to dynamically adapt
the control of the application. Interesting approaches [28, 3]
work towards this direction.

However, plain information is useless if we are unable
to transform this information to knowledge, i.e. clear un-



derstanding of the application’s execution behavior. We
need to know hotspots of performance degradation or en-
ergy wastage (e.g. if the application is consuming all avail-
able memory bandwidth), and “cool spots”, i.e. resources
of the system that remain underutilized. This knowledge
can drive the system to take decisions towards an execution
context with higher efficiency. Finally, the system must have
the power to take actions, i.e. adapt the running application
to meet the required objectives.
Figure 3 provides an overview of a system designed to per-

form holistic adaptation for HEC. Domain experts can con-
vey extra semantic information about a program via annota-
tions and language extensions (e.g., alternative algorithms,
or a domain-specific language to describe data-structure prop-
erties and usage characteristics). The compiler toolset ap-
plies optimizations and transformations based on the static
source code, any additional semantic information, architec-
ture-specific parameters of the target platform, and user
inputs for a specific execution instantiation. The runtime
system tracks additional information via a lightweight mon-
itoring infrastructure and directs data to dynamic tuning
modules (decision maker) to adapt the execution context.
In a larger context, the system can tune multiple “knobs”
synergistically: applications can be co-scheduled to mini-
mize contention for resources, to control energy dissipation
or thermal properties of the system, or to balance clock fre-
quency with checkpointing behavior to deliver efficiency and
high performance with acceptable reliability.
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Figure 3: Overview of an information-driven adap-
tation infrastructure

Our view is that if we break the bounds between the
sources of available information, we will be able to exploit
numerous opportunities for adaptation, extending the tar-
get architectures, scales, parameters and metrics. Tuning
activities will include simultaneously choosing the best in-
stance among multiple code versions, selecting appropriate
numbers and placements of threads, restructuring data (and
the loops that operate on them) to increase performance and
reduce energy dissipation.

6. CONCLUSIONS
Execution environments are becoming increasingly diverse

and pose severe limitations to applications. Adaptation is a
viable approach for software to meet the challenges of High-
Efficiency Computing. The effectiveness of adaptation is
closely coupled to the quality of the information used, thus
it is important to devise a unified framework so that static
program analysis, properties of the user input, and PMU
observations can contribute to application optimization. We
illustrate this approach by presenting two examples of run-
time adaptation that utilize information on user input, ar-
chitectural features, and the execution behavior of the appli-
cation. The benefits of a unified framework are beyond what
static transformations can obtain and show a clear path to
information-driven adaptation. We expect that future soft-
ware infrastructures that enable information flow and adap-
tation throughout the life-cycle of applications will provide
a key element in the development of exascale software.
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