27,803 research outputs found

    Multitask Diffusion Adaptation over Networks

    Full text link
    Adaptive networks are suitable for decentralized inference tasks, e.g., to monitor complex natural phenomena. Recent research works have intensively studied distributed optimization problems in the case where the nodes have to estimate a single optimum parameter vector collaboratively. However, there are many important applications that are multitask-oriented in the sense that there are multiple optimum parameter vectors to be inferred simultaneously, in a collaborative manner, over the area covered by the network. In this paper, we employ diffusion strategies to develop distributed algorithms that address multitask problems by minimizing an appropriate mean-square error criterion with â„“2\ell_2-regularization. The stability and convergence of the algorithm in the mean and in the mean-square sense is analyzed. Simulations are conducted to verify the theoretical findings, and to illustrate how the distributed strategy can be used in several useful applications related to spectral sensing, target localization, and hyperspectral data unmixing.Comment: 29 pages, 11 figures, submitted for publicatio

    A Multitask Diffusion Strategy with Optimized Inter-Cluster Cooperation

    Full text link
    We consider a multitask estimation problem where nodes in a network are divided into several connected clusters, with each cluster performing a least-mean-squares estimation of a different random parameter vector. Inspired by the adapt-then-combine diffusion strategy, we propose a multitask diffusion strategy whose mean stability can be ensured whenever individual nodes are stable in the mean, regardless of the inter-cluster cooperation weights. In addition, the proposed strategy is able to achieve an asymptotically unbiased estimation, when the parameters have same mean. We also develop an inter-cluster cooperation weights selection scheme that allows each node in the network to locally optimize its inter-cluster cooperation weights. Numerical results demonstrate that our approach leads to a lower average steady-state network mean-square deviation, compared with using weights selected by various other commonly adopted methods in the literature.Comment: 30 pages, 8 figures, submitted to IEEE Journal of Selected Topics in Signal Processin

    Proximal Multitask Learning over Networks with Sparsity-inducing Coregularization

    Full text link
    In this work, we consider multitask learning problems where clusters of nodes are interested in estimating their own parameter vector. Cooperation among clusters is beneficial when the optimal models of adjacent clusters have a good number of similar entries. We propose a fully distributed algorithm for solving this problem. The approach relies on minimizing a global mean-square error criterion regularized by non-differentiable terms to promote cooperation among neighboring clusters. A general diffusion forward-backward splitting strategy is introduced. Then, it is specialized to the case of sparsity promoting regularizers. A closed-form expression for the proximal operator of a weighted sum of â„“1\ell_1-norms is derived to achieve higher efficiency. We also provide conditions on the step-sizes that ensure convergence of the algorithm in the mean and mean-square error sense. Simulations are conducted to illustrate the effectiveness of the strategy
    • …
    corecore