3 research outputs found

    Antepartum fetal heart rate feature extraction and classification using empirical mode decomposition and support vector machine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiotocography (CTG) is the most widely used tool for fetal surveillance. The visual analysis of fetal heart rate (FHR) traces largely depends on the expertise and experience of the clinician involved. Several approaches have been proposed for the effective interpretation of FHR. In this paper, a new approach for FHR feature extraction based on empirical mode decomposition (EMD) is proposed, which was used along with support vector machine (SVM) for the classification of FHR recordings as 'normal' or 'at risk'.</p> <p>Methods</p> <p>The FHR were recorded from 15 subjects at a sampling rate of 4 Hz and a dataset consisting of 90 randomly selected records of 20 minutes duration was formed from these. All records were labelled as 'normal' or 'at risk' by two experienced obstetricians. A training set was formed by 60 records, the remaining 30 left as the testing set. The standard deviations of the EMD components are input as features to a support vector machine (SVM) to classify FHR samples.</p> <p>Results</p> <p>For the training set, a five-fold cross validation test resulted in an accuracy of 86% whereas the overall geometric mean of sensitivity and specificity was 94.8%. The Kappa value for the training set was .923. Application of the proposed method to the testing set (30 records) resulted in a geometric mean of 81.5%. The Kappa value for the testing set was .684.</p> <p>Conclusions</p> <p>Based on the overall performance of the system it can be stated that the proposed methodology is a promising new approach for the feature extraction and classification of FHR signals.</p

    Novel Facial Image Recognition Techniques Employing Principal Component Analysis

    Get PDF
    Recently, pattern recognition/classification has received considerable attention in diverse engineering fields such as biomedical imaging, speaker identification, fingerprint recognition, and face recognition, etc. This study contributes novel techniques for facial image recognition based on the Two dimensional principal component analysis in the transform domain. These algorithms reduce the storage requirements by an order of magnitude and the computational complexity by a factor of 2 while maintaining the excellent recognition accuracy of the recently reported methods. The proposed recognition systems employ different structures, multicriteria and multitransform. In addition, principal component analysis in the transform domain in conjunction with vector quantization is developed which result in further improvement in the recognition accuracy and dimensionality reduction. Experimental results confirm the excellent properties of the proposed algorithms

    Self Designing Pattern Recognition System Employing Multistage Classification

    Get PDF
    Recently, pattern recognition/classification has received a considerable attention in diverse engineering fields such as biomedical imaging, speaker identification, fingerprint recognition, etc. In most of these applications, it is desirable to maintain the classification accuracy in the presence of corrupted and/or incomplete data. The quality of a given classification technique is measured by the computational complexity, execution time of algorithms, and the number of patterns that can be classified correctly despite any distortion. Some classification techniques that are introduced in the literature are described in Chapter one. In this dissertation, a pattern recognition approach that can be designed to have evolutionary learning by developing the features and selecting the criteria that are best suited for the recognition problem under consideration is proposed. Chapter two presents some of the features used in developing the set of criteria employed by the system to recognize different types of signals. It also presents some of the preprocessing techniques used by the system. The system operates in two modes, namely, the learning (training) mode, and the running mode. In the learning mode, the original and preprocessed signals are projected into different transform domains. The technique automatically tests many criteria over the range of parameters for each criterion. A large number of criteria are developed from the features extracted from these domains. The optimum set of criteria, satisfying specific conditions, is selected. This set of criteria is employed by the system to recognize the original or noisy signals in the running mode. The modes of operation and the classification structures employed by the system are described in details in Chapter three. The proposed pattern recognition system is capable of recognizing an enormously large number of patterns by virtue of the fact that it analyzes the signal in different domains and explores the distinguishing characteristics in each of these domains. In other words, this approach uses available information and extracts more characteristics from the signals, for classification purposes, by projecting the signal in different domains. Some experimental results are given in Chapter four showing the effect of using mathematical transforms in conjunction with preprocessing techniques on the classification accuracy. A comparison between some of the classification approaches, in terms of classification rate in case of distortion, is also given. A sample of experimental implementations is presented in chapter 5 and chapter 6 to illustrate the performance of the proposed pattern recognition system. Preliminary results given confirm the superior performance of the proposed technique relative to the single transform neural network and multi-input neural network approaches for image classification in the presence of additive noise
    corecore