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ABSTRACT 

 
 
 
 

Recently, pattern recognition/classification has received considerable attention in diverse 

engineering fields such as biomedical imaging, speaker identification, fingerprint 

recognition, and face recognition, etc. 

 

This study contributes novel techniques for facial image recognition based on the Two 

dimensional principal component analysis in the transform domain. These algorithms 

reduce the storage requirements by an order of magnitude and the computational 

complexity by a factor of 2 while maintaining the excellent recognition accuracy of the 

recently reported methods. 

 

The proposed recognition systems employ different structures, multicriteria and 

multitransform. In addition, principal component analysis in the transform domain in 

conjunction with vector quantization is developed which result in further improvement in 

the recognition accuracy and dimensionality reduction.  

 

Experimental results confirm the excellent properties of the proposed algorithms. 
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CHAPTER 1  INTRODUCTION 
 
 
 
Pattern recognition and classification has become one of the important areas in 

research, such as biomedical imaging, speaker identification, fingerprint and image 

recognition.  

 

Recognition accuracy, storage requirements, and computational complexity are 

considered the most important factors in designing any pattern recognition system. 

Within the last several years, numerous algorithms have been proposed to solve such 

problems. One of the most successful techniques is the principal component analysis. 

 
 
Principal component analysis (PCA), or Karhunen- Loeve expansion, technique is 

used for feature extraction from data. It is widely used in the areas of pattern 

recognition. Sirovich and Kirby [1], [2] first used PCA to represent pictures of human 

faces. In 1991 Turk and Pentland [3] presented the well-known Eigenfaces method 

for face recognition. Since then, PCA has been widely investigated and has become 

one of the most successful approaches in face recognition [4], [5], [6], [7]. 

Penev and Sirovich [8] discussed the problem of dimensionality of the “face space” 

when eigenfaces are used for representation.  

Zhao and Yang [9] tried to account for the arbitrary effects of illumination in PCA-

based vision systems by generating an analytically closed form formula of the 

covariance matrix for the case with a special lighting condition and then generalizing 

to an arbitrary illumination via an illumination equation. 
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However, Wiskott et al. [10] pointed out that PCA could not capture even the 

simplest invariance unless this information is explicitly provided in the training data. 

They proposed a technique known as elastic bunch graph matching to overcome the 

weaknesses of PCA. 

 

Recently, independent component analysis (ICA) and kernel principal component 

analysis (Kernel PCA) were presented. Bartlett et al. [11] and Draper et al. [12] ,[13] 

found that using ICA for face representation  was better than PCA when cosines were 

used as the similarity measure rather using the Euclidean distance. Yang [14] used 

Kernel PCA for face feature extraction and recognition and showed that the Kernel 

Eigenfaces method outperforms the classical Eigenfaces method. However, ICA and 

Kernel PCA are both computationally more expensive than PCA. The experimental 

results in [14] showed the ratio of the computation time required by ICA, Kernel 

PCA, and PCA is, on average, 8.7: 3.2: 1.0. [15]. 

 

In the PCA technique, the 2D face image matrices are concatenated into 1D image 

vectors. The resulting image vectors representing the training images usually lead to a 

high dimensional image vector space. Evaluating the covariance matrix in such high 

dimensional space is usually difficult, especially in the presence of small number of 

training images, which is typically in practice. Fortunately, the eigenvectors 

(eigenfaces) can be calculated efficiently using the SVD techniques [1], [2] . Since 

the eigenvectors are statistically determined by the covariance matrix, using SVD 

does not really present the actual eigenvectors. Recently a two-dimensional principal 
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component analysis (2DPCA) technique [15], was developed for extracting image 

features. The 2DPCA is based on 2D matrices rather than 1D vectors. The covariance 

matrix is calculated directly using the original matrices representing the training 

images. In contrast to the covariance matrix of PCA, the size of the image covariance 

matrix using 2DPCA is much smaller. As a result, the covariance matrix is easier to 

evaluate accurately, so less time is required to determine the corresponding 

eigenvectors. In addition, the recognition accuracy is higher than that obtained using 

the PCA method. However the storage requirements are not as good as the PCA. 

 

In this research, novel techniques based on the 2DPCA in the transform domain that 

overcomes this drawback and improves the computational time while maintaining or 

improving the recognition accuracy advantage of the 2DPCA method are investigated 

and developed.  These improvements were achieved by using other classification 

tools such as Vector quantization (VQ) in conjunction with the PCA methods. 

 

The rest of this dissertation is organized as follows. 

 

In chapter two, a brief description of the 2DPCA analysis is introduced. In addition, a 

two directional 2DPCA technique is presented. The training and testing algorithms 

are explained for these two methods.  

 

 In chapter three, a practical, facial-recognition, transform-domain, two-dimensional, 

principal component analysis technique (TD2DPCA) [16],[17],[18] is presented. The 

 3



TD2DPCA reduces the storage and computational requirements to train the system by 

approximately a factor of ten and two respectively, while retaining the high 

recognition accuracy, relative to the state of the art, 2DPCA method. The 

TD2DPCA’s excellent properties are confirmed experimentally for noise free and 

noisy images. 

In Chapter four a Transform Domain Two-Directional Two-Dimensional Principal 

Component Analysis (TD/2D2DPCA) algorithm [19] applied to facial recognition is 

presented. This algorithm has attractive properties with respect to storage and 

computational requirements, while maintaining the high recognition accuracy 

achieved before.   In addition, a Modified -TD2DPCA  (M-TD2DPCA) method [20], 

presenting a new way of calculating the covariance matrix of the training images is 

proposed. This approach reduced the computational complexity required to calculate 

the covariance matrix while maintaining good accuracy. 

 

Chapter five presents techniques which combine VQ with transform domain principal 

component representation in the training mode. This results in drastically increasing 

the speed of recognition in the testing mode [21],[22]. 

 

In Chapter six, a parallel structure recognition system is introduced [23],[24]. The 

system employs different structures, multicriteria and multitransform techniques. In 

addition, principal component analysis in the transform domain in conjunction with 

vector quantization is developed which result in further improvement in the 

recognition accuracy and dimensionality reduction.  

 4



 

Experimental results are given which confirm the excellent properties of the proposed 

algorithms. 

 

Finally, In chapter Seven future work is presented. 
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CHAPTER 2    TWO DIMENSIONAL PRINCIPAL COMPONENT 
ANAYLSIS (2DPCA) AND TWO-DIRECTIONAL 2DPCA (2D-

2DPCA) ALGORITHMS 
 
 

2.1   The 2DPCA algorithm 
 
 
Recently Yang et al [15] presented the 2DPCA method for face recognition where the 

covariance matrix S for N training images, Ai , of dimensions mxn (where i=1 to N) is 

formed in 2D rather than converting each image into a one dimensional vector of size 

mxn as in [1]. This   The n x n  S matrix is computed as follows,  

 

             )()
1
(1 AiATN

i
AiANS −∑

=
−=                           (2.1) 

 

where A  is the mean matrix, of all the N training images. 

A set of the k largest eigenvectors of the covariance matrix, V = [V1, V2 .. Vk ] of size 

n is obtained, so that the projection of the training images on V gives the best scatter. 

V is used for feature extraction for every training image Ai. The projected feature 

vectors Y1 ,Y2 ,..Yk  , where 

 

Yj,i = Ai Vj                    j =1,2,….k     , i=1…N               (2.2) 

 

are used to form a feature matrix BBi of size mxk for each training image Ai ,where   

    

 BBi = [Y1,i ,Y2,i ,…Yk,i ]        i = 1,2,..N                             (2.3) 
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The tested image is projected on V, and the obtained feature matrix BBt is compared 

with those of the training images.  

The Euclidean distances between the feature matrix of the tested image and the 

feature matrices of the training images are computed. The minimum distance 

indicates the image to be recognized. 

 

 

 

2.2   A brief describtion  of 2D-2DPCA method 
 

 

The 2DPCA method [15] forms the covariance matrix, Sr , for N training images, Ai 

of dimensions mxn (where i=1 to N) in 2D rather than converting each image into a 

one dimensional vector of size mxn as in [3]. 

 The n x n  Sr  matrix is computed from  

 

             )()
1

(1 AiA
N

i
AiANrS

T
−∑

=
−=                               (2.4) 

 

where A  is the mean matrix, of all the N training images. 

 

Recently, it was shown [25] that the 2DPCA method works in the row direction of the 

images to form the covariance matrix, Sr . And an alternative 2DPCA method that 

 7



works in the column direction was introduced, where the covariance matrix, Sc, is 

calculated as follows 

 

             TAiA
N

i
AiANcS ))(

1
(1 −∑

=
−=                                 (2.5) 

 

In the 2D2DPCA algorithm , two sets, Vr  and  Vc  , of the k largest eigenvectors , of 

sizes n and m respectively, for both covariance matrices, Sr and  Sc , are obtained. 

Where , 

 Vc  = [Vr1, Vr2 .. Vrk ]    and   Vc  = [Vc1, Vc2 .. Vck ] 

 

The projection of the training images on Vr and Vc gives the best scatter. Vr and Vc are 

used for feature extraction for every training image Ai .The projected feature vectors 

Y1,i ,Y2,i ,…Yk,I  , where 

 

Yj,i = Vc
T  Ai Vr                    j =1,2,….k     , i=1…N            (2.6) 

 

are used to form a feature matrix BBi of size kxk for each training image Ai.  Where   

    

 BBi = [Y1,i ,Y2,i ,…Yk,i ]        i = 1,2,..N                                 (2.7) 

 

 

The tested image is projected on Vr and Vc , and the obtained feature matrix BBt is 

compared with those of the training images.  
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The distance measures, such as the Euclidean distances, between the feature matrix of 

the tested image and the feature matrices of the training images are computed. The 

minimum distance indicates the image to be recognized. 
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CHAPTER 3   TRANSFORM  DOMAIN  2DPCA (TD2DPCA) 
ALGORITHM 

 
 
 

3.1  Introduction 
 

Recognition accuracy, storage requirements, and computational complexity are the 

most important performance parameters in pattern recognition and classification. 

Several methods have been proposed in this area. Algorithms based on one 

dimensional Principal Component Analysis (PCA) or Karhunen-loeve expansions 

[26-60] have been reported. Existing two dimensional PCA (2DPCA) spatial domain 

algorithms [15] has better recognition accuracy and faster implementation relative to 

the PCA methods. This is achieved at the expense of higher storage requirements.  

 

In this contribution a practical, facial-recognition, transform-domain, two-

dimensional, principal component analysis technique (TD2DPCA) is presented. The 

proposed approach is useful for large databases encountered in several areas such as 

security and multimedia applications. The TD2DPCA reduces the storage and 

computational requirements to train the system by approximately a factor of ten and 

two respectively, while retaining the high recognition accuracy, relative to the state of 

the art, 2DPCA method. In addition the recognition speed in the testing mode is 

reduced by approximately a factor of two. The TD2DPCA’s excellent properties are 

confirmed experimentally for noise free and noisy images [16],[17],[18]. 
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In section 3.2, a spatial domain-transform domain 2DPCA (SD-TD2DPCA) 

algorithm is presented. In the SD-TD2DPCA method the 2DPCA analysis is 

performed on the training images in the spatial domain. After Computing the 

covariance matrix of the training images in the spatial domain, the matrix is 

transformed to the transform domain. This is in contrast to the TD2DPCA method, 

introduced in section 3.3, where all the calculations are performed in the transform 

domain. Experimental results confirm the excellent characteristics of the proposed 

algorithm. Conclusions are presented in section 3.4.  
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3.2  The SD-TD/2DPCA algorithm 
 
 

 
The proposed algorithm represents the signals and their covariance matrix in the 

transform domain.  This result in considerable reduction in the coefficients required 

to represent the signals. Consequently the computational and storage requirements, 

are greatly simplified as will be shown later. The proposed Spatial Domian-

Transform Domain Two Dimensional Principal Component Analysis (SD-

TD/2DPCA) algorithm is described below. 

 

3.2.1  Training mode 
 

In the training mode the features of the data base are extracted and stored as described 

by steps 1 through 7, figure 3-1, 3-2. 

 

Step 1: The covariance matrix S for the N training images is calculated using (3.1). 

 

    )()(1

1
AAAA

N
S i

TN

i
i −∑ −=

=            (3.1)    
 

Where  Ai   ( i= 1 to N )  is the matrix representing the training image i  in the spatial 

domain  and  ∑=
=

− N

i
iA

N
A

1

1
 is the average image for the N training images.  
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Step 2: An appropriate transform {Tr}, that compresses the signal energy in few 

components, for simplicity assumed to be in the upper left corner of the transformed 

matrix,  is applied to S, which yields T. 

 

                                                                             (3.2) }{STrT =

 

Step 3: The significant coefficients of T are contained in a submatrix, S’, (upper left 

part of T) of dimension n’ x n’ . Figure 3-3 shows an example of the ratio of energy in 

S’ to the energy in T, as a function of  n’.  S’ is used to replace S in our algorithm. 

 

Step 4: A set of k’ eigenvectors , V = [ V1, V2 … Vk’] , of size n’ corresponding to the 

largest k’ eigenvalues is obtained for S’. Since the dimensions of S’ is much smaller 

than S, k’ is smaller than k. 

 

Step 5: The same transform is applied to each image Ai of the N training images, 

yielding Ti’ (i=1 to N). 

                                                                            (3.3) }{'
ii ATrT =

 

Step 6: The submatrix Ai’ from Ti’, containing most of the energy is retained (upper 

left part of   Ti’ ). This submatrix is used to represent the training image. Dimensions 

of Ai’ is m’ x n’ where n’ ≤ m’. Figure 3-4. shows an example for the ratio of energy 

in Ai’ to the energy in Ti’, as a function of n’ for three image samples . 
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Step 7:  The feature matrices of the training images BBi  are calculated as follows   

Yj,I  = Ai’ Vj         j =1,2,….k'  and   i = 1,2,..N                      (3.4)                             

BBi  = [Y1,i ,Y2,i ,…Yk’,i ]                                                            (3.5) 

Now the feature matrix representing the training image has dimensions (n’ x k’ )  

where m’≤ n’ ,  n’ is much smaller than n and m, and k’< k.  

 

 

3.2.2   Testing mode  
 

In the testing mode a facial image At is presented to the system to be identified. The 

steps are as follows 

 

Step 1  The same transform used in the training mode is applied to At which yield Tt’ . 

 

                                                                             (3.6) }{'
tt ATrT =

 

Step 2  The sub matrix At’  (m’ x n’) containing most of the energy is obtained from 

Tt’ . 
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Step 3  The feature matrix BBt  for the testing image is calculated as follows 

 

Yj,t = At’ Vj                         j =1,2,….k’                                 (3.7)           

 

BBt  = [Y1,t  ,Y2,t  ,…Yk’,t  ]                                                        (3.8)              

 

Step 4 The Euclidean distance between the feature matrix of the testing image BBt  and 

the feature matrices of the training images BiB  (i=1 to N) are computed. i 

corresponding to the minimum distance, imin , is used to identify  t. 
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Training  Mode 
 

              
 
 

Input N images 
Ai (i =1 to N). 

Ai is mxn pixels 

 
            Step 1                                                

Compute the covariance matrix S of the input images 
 

)()(1

1
AAAA

N
S i

TN

i
i −∑ −=

=
 

 

Where   ∑=
=

− N

i
iA

N
A

1

1  

 
            Step 2                                                

Compute   Tr{ S} 
Tr denotes appropriate 

transform, such as Discrete 
Cosine Transform DCT. 

            Step 3 
 Select  S’ 

 
Where S’ is the submatrix of 

Tr{S}containing most of the energy. 
S’ is n’xn’ pixels 

 

 
 
 

 
  
           
            Step 4 

A set of k eigenvectors V’ = 
[V’1, V’2 ..V’k’ ]  of size n’ 

corresponding to the largest k’ 
eigenvalues is obtained for S’. 

 
            Step 5  

Compute Tr{ Ai} 
For each training image Ai 

compute T’i
Where    T’i =  Tr{ Ai } 

             
 

Figure 3-1.  SD-TD/2DPCA Training mode flow-chart 

(Continued next page) 
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Training mode (continued) 
 
 
 

 
          Step 6                                                 Select   Ai

’

 
where  Ai

’ is   the  submatrix   of  T’i 
containing most of the energy . 

Ai
’  is n’xn’ pixels. 

 
 
 
   
 
          Step 7 
 

Compute Bi
 

Where B’i is the feature matrix  for the training 
image Ai . 

 
Y’j,i = Ai’ V’j                    j =1,2,….k’ 

 
B’i = [Y’1,i ,Y’2,i,…Y’k’,i ] 

 
Store B’i corresponding to each training image Ai

 
 

 
 
                                           

Figure 3-1.Cont.  SD-TD/2DPCA Training mode flow-chart 
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Testing Mode 
 

             
 

Unknown Facial image At

is presented to the system 

 
 

           Step 1 
Compute Tt

 
Where    T’t =  Tr{ At } 

          Step 2                                             
 

Select   At
’                       

 
where  At

’ is   the  submatrix   of  T’t 
containing most of the energy . 

At
’  is n’xn’ pixels. 

          Step 3 
 

Compute B’t
 

Where B’t is the feature matrix  
for the testing image 

 
Y’j,t = At’ V’j              j =1,2,….k’      

 
B’t = [Y’1,t ,Y’2,t,…Y’k’,t ]                     

 
          Step 4 

Measure the Euclidean distance between 
the feature matrix of the testing image B’t 

and the feature matrices of the stored 
training images B’i  (i=1 to N). 

 

2

'

1
,, '')','( ∑ −=

=

k

j
ijtjit YYBBd  

 
 

i corresponding to the minimum distance, 
imin , is used to identify At

 
 
 

        
 
 
 

Figure 3-2   

Figure 3-2: SD-TD/2DPCA Testing mode flow-chart. 
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Figure 3-3  The ratio of energy in the TD2DPCA covariance matrix S’  (Es’)  to the 

energy in  the covariance matrix of  2DPCA (ET) as a function of number of rows 

and columns of  S’ ( n’) . 
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Figure 3-4 :  The ratio of energy in Ai’  (EA’) to the energy in Ti’ (ET’) , as a 

function    of n’ for  three image samples , where Ti’ = DCT2(Ai) , and Ai’ is a 

truncated version of dimension m’xn’ , obtained from Ti’ . 
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3.2.3    Application of the proposed algorithm to face recognition, employing DCT.  
 

The proposed algorithm, using two dimensional discrete cosine transform, was 

applied to the ORL database [61] , the Yale database [62] and a subset of the UMIST 

database [63].  The ORL database consists of 400 images of 40 individuals (10 

images each), where pose and facial expressions are varying, figure 3-5.  

The Yale database consists of 165 images of 15 individuals (11 images each) where 

illumination and face expression are varying, figure 3-6. 

The subset used for the UMIST database consists of 200 images of 20 individuals 

where pose is varying figure 3-7.  

Results are compared with those obtained using the 2DPCA and PCA  methods. 
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Figure 3-5: Sample of  32 individuals in the ORL database 
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Figure 3-6: Eleven individuals in the Yale Database 
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Figure 3-7:  Three samples for two individuals in the UMIST  database . 
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3.2.3.1    Experimental results using the ORL database 
 

Two experiments have been applied to the ORL data base, where all the images are 

grayscale with 112 x 92 pixels each. 

In the first experiment, 40 images of 40 different individuals are used for training and 

the remaining 360 images are used for testing .  

The dimensions of  the covariance matrix S for the 40 training images is 92x92. A 

two-dimensional DCT [64] is applied to the covariance matrix S which yields T. S’ is 

obtained for n’=20. The 5 largest eigenvectors of S’ corresponding to the 5 largest 

eigenvalues are obtained, i.e, k’ is chosen to be 5 (for the 2DPCA method k = 10 is 

used for the best recognition accuracy). Ti’ (i =1 to 40) are obtained. Then Ai’ of 

dimensions 20x20   (i =1 to 40) are determined,   

 i.e , m’xn’= 20x20 in our experiment. 

The feature matrices for all the training images are obtained. The procedure in section 

3.2.2 is followed for the 360 testing images.  

Table 3-1 gives the recognition accuracy for the proposed technique as well as 

2DPCA and PCA methods. 

 

In the second experiment 5 images per class are used for training and the remaining 

200 images are used for testing. The Dimensions of S’ and Ai’ are the same as in the 

first experiment. k’ is chosen equal to 5. For the 2DPCA method, k equals 10 is used 

for the best recognition accuracy. Results using the proposed algorithm, 2DPCA, and 

PCA techniques are listed in Table 3-1,  
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Table 3-1  shows that the proposed algorithm yields similar recognition accuracy as 

the 2DPCA method.     

 

Table 3-2 illustrates the computational complexity, in terms of the number of 

multiplications [64], and the storage requirements, in terms of the dimensions of the 

feature matrix. It is seen that, for the TD/2DPCA, the amount of storage is drastically 

reduced (by approximately 90%), while the computational complexity is lower, 

compared with one of the best available algorithm, 2DPCA. This is accomplished 

while maintaining the same level of recognition accuracy. It can be easily shown that 

the excellent properties of the new technique are maintained for the facial databases 

in section 3.2.3.2, and 3.2.3.3 and others.  
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3.2.3.2

3.2.3.3

   Results for Yale database                                        
 

In this experiment the dimensions of the images used are 243x320. Five images per 

class are used for training and the remaining images are used for testing. The 

Dimensions of S’ is (50x50), and the dimension of Ai’ is (50x50). k’ is chosen equal to 

5. For the 2DPCA method, k equals 20 is used for the best recognition accuracy. 

Results are listed in Table 3-3, Where it shows that the proposed algorithm gives 

similar recognition accuracy as the 2DPCA method  with a feature matrix per image 

much more reduced in size (approximately 95%).  

The computation requirements in terms of the number of multiplications during the 

training and the testing modes are significantly reduced. 

 

   Results for UMIST database                                        
 

In this experiment each image is cropped and scaled to 185x160. Three images per 

class are used for training and the remaining images are used for testing. The 

Dimensions of S’ is (40x40), and the dimension of Ai’ is (40x40). k’ is chosen equal to 

5. For the 2DPCA method, k equals 15 is used  for the  best recognition accuracy. 

Results are listed in table IV. where it confirms that the proposed algorithm gives 

similar recognition accuracy as the 2DPCA method with a reduced feature matrix per 

image and lower computation requirements.   
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Figure 3-8 : Training with one image per individual in the ORL database and testing 

with the remaining images 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 28



 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 3-9 : Training with five images per individual in the ORL database and testing 

with the remaining images 
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Figure 3-10  : Training with five images per  individual in the Yale database and 

testing with the remaining images 
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Table 3-1 :  Recognition accuracy for experiments, I and II, on the ORL database 

 using SD-TD/2DPCA, 2DPCA and PCA methods 

 
 

 
 

Method 

 
Recognition 

accuracy 
for experiment I 

 
 
 

 
Recognition 

accuracy 
for experiment II 

 
SD-TD/2DPCA

 
73.61 % 

 
92.0 % 

 
2DPCA 

 
72.77 % 

 
91.0 % 

 
PCA 

 
62.77 % 

 
83.5 % 
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Table 3-2 : Dimensions of the feature matrix and number of multiplications required 

for N training images in the ORL database, for experiment I, and II.  

 
 

 
SD-TD/2DPCA 

 

 
2DPCA 

 
 
Dimensions of feature 
matrix per image 
 

 
(20x5) 

 

 
(112x10) 

 

 
Storage requirements 
for N  images    
 

 
(20x5) x N 

 
(112x10) x N 

 
# of multiplications 
required for training  
 

 
47104+57344xN 

 

 
103040xN 

 

 
# of multiplications 
required for testing 
 

 
57344 

 

 
103040 
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Table 3-3 : Recognition accuracy, storage requirements and computational 

complexity for the experiment on the Yale database. 

 
 

  
SD-TD/2DPCA 

 

 
2DPCA 

 
Recognition accuracy 
 

 
78.8 % 

 
77.7 % 

 
Dimensions of feature 
matrix per image 
 

 
(50 x 5) 

 

 
(243 x 20) 

 
Storage requirements 
for N  images    

 

 
(50x5) x N 

 

 
(243x20) x N 

 
# of multiplications 
required for training  

 

 
248832+262144 x N

 
1555200 x N 

 

 
# of multiplications 
required for testing 
 

 
262144 

 
1555200 
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Table 3-4 : Recognition accuracy and dimensions of feature matrix per image for the 

experiment on the subset of the UMIST database. 

 
  

SD-TD/2DPCA 
 

2DPCA 

 
Recognition 
accuracy 

 
83.57 % 

 
80 % 

 
Dimensions of 
feature matrix 
per image 
 

 
(40 x 5) 

 

 
(185 x 15) 
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3.3   TD2DPCA recognition and classification algorithm: 
 

A novel facial recognition two-dimensional principal component analysis technique 

in the transform domain (TD2DPCA) which lends itself to practical applications is 

presented. The facial images are transformed using an appropriate domain that 

compacts the image energy. Then, the dominant principal components of the 

compacted images are obtained to represent the compacted images. This is shown to 

simultaneously achieve two desirable objectives, namely, the reduction of storage and 

computational requirements, and the improved accuracy due to the use of the 

principal component representation of  the transformed images. The TD2DPCA is 

implemented using DCT and applied to several databases of facial images. It is shown 

that the new technique retains the high accuracy of recently proposed methods [15], 

namely 2DPCA,  while reducing the storage requirements and the computational 

complexity by approximately 90 % and 50 % repectively. 

 

The proposed algorithm is described below. 

 

3.3.1   Training mode:  
 
 
In the training mode, the features of the facial images in the data base are extracted 

and stored as described by steps 1 through 5. 

 

Step 1: A suitable transform (Tr) is applied to each spatial training image Ai ( i=1 to 

N ), yielding Ti  (i=1 to N), thus 
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                      }{
−

−= AATT ii                                                 (3.8)            

Where  is the mean image, of all the N training images and A
−
A i is of dimensions 

mxn. 

 

Step 2: The covariance matrix S’ for the N training images is calculated as follows 

                       )()(1
1

i
N

i

T
i TT

N
S ∑

=
=                                           (3.9) 

Where   is the transpose of . T
iT )( )( iT

The transform is chosen such that most of the energy in S is concentrated in a much 

smaller submatrix , S ’, (upper left corner of S ) of dimensions n’ x n’ , where n’ is 

much smaller than m and n. Then, S’ is used to replace S in our algorithm. 

 

Step 3: The set of dominant k’ eigenvectors, V= [ V1 , V2 … Vk’ ] , corresponding to 

the largest k’ eigenvalues of S’ is obtained. Vj   is an n’x1 vector, j =1 to k’. 

 

Step 5:  The feature matrix, Bi , corresponding to Ai’, in the dominant principal 

components space V , is calculated from 

 Bi  = [Y1,i ,Y2,i ,…Yk’,i ]                                                                (3.10) 

where 

Yj,i = Ai’ Vj       j =1,2,….k’  and   i = 1,2,..N                                 (3.11)                             

 

The Bi matrices, of dimensions n’xk’, are stored. 
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3.3.2  Testing mode:  
 
 
In the testing mode, a facial image At is presented to the system to be identified. This 

is accomplished as follows.  

 

Step 6:  The same transform used in the training mode is applied to At, as described 

before, which yields the sub matrix At’  

                                                           

 

Step 7:  The feature matrix, Bt , for the unknown image, is calculated as given in  Step 

5 in the training mode, which yields 

 

BBt = [Y1,t ,Y2,t ,…Yk’,t ]                                                                (3.13)              

Where 

Yj,t = At’ Vj                       j =1,2,….k’                                         (3.14)           

 

 

Step 9:  The Euclidean distance d(BBt , BiB ) between the feature matrix Bt and the 

feature matrix Bi ,for all i , is computed from  

21
,,),( ∑ −=

=

k

j
ijtjit YYBBd

                                           (3.15)              
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Where 2
,, ijtj YY −  denotes the distance between the two vectors Yj,t and Yj,i 

expressed as the sum of the squares of the differences of the corresponding elements 

in the two vectors. 

i which corresponds to the minimum distance, imin , is used to identify  t. 
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3.3.3  Experimental Results: 
 

 

Sample results employing the proposed technique to the facial recognition of some of 

the existing databases, ORL and Yale [61, 62], are given for illustration. The ORL 

images are greyscale with 112 x 92 pixels each. The Yale images are greyscale with 

243x320 pixels each. 

 

3.3.3.1 Experimental Results Employing the ORL database 
 

Two experiments, I and II, are conducted using the ORL database. In experiment I, 40 

images of 40 different individuals are used for training and the remaining 360 images 

are used for testing. In experiment II, 5 images per individual are used for training 

and the remaining 200 images are used for testing. The proposed TD2DPCA, and two 

existing methods, namely, 2DPCA and PCA are used. The Results are given for 

comparison in Tables 3-5 and 3-6.  

 
 
 

3.3.3.2  Experimental Results Employing the Yale database 
 

In experiment III, our technique as well as the existing 2DPCA approach is applied to 

the Yale database. Five images per class are used for training and the remaining 

images are used for testing. The Results are summarized in Table 3-7. 
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Tables 3-5 and 3-7 show that, the new technique achieves the same recognition 

accuracy as the spatial 2DPCA.  

Also, from Tables 3-6 and 3-7, the computational requirements employing the 

TD2DPCA, described by the number of multiplications, are reduced by a factor of at 

least 2 relative to the 2DPCA method. In addition, the storage requirements are 

reduced by a factor 10 for the data used. Considerable reduction in computational and 

storage requirements employing TD2DPCA was consistently obtained for other 

databases, namely the FERET,  without any loss of recognition accuracy.  
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3.3.3.3  Experimental Results on the ORL database in the presence of noise 
 
 
 

In this experiment the  TD2DPCA algorithm is tested in the presence of noise, 

namely the salt and pepper noise and the white Gaussian noise. 

 

Salt and pepper noise is a form of noise typically seen on images. It represents itself 

as randomly occurring white and black pixels. Usual and effective noise reduction 

method for this type of noise involves the usage of median filter. 

 

Gaussian noise is noise that has a probability density function (abbreviated pdf) of the 

normal distribution (also known as Gaussian distribution). In other words, the values 

that the noise can take on are Gaussian distributed. It is most commonly used as 

additive white noise to yield additive white Gaussian noise (AWGN). 

 

Tables 3-5and 3-7 show that the proposed TD2DPCA algorithm yields good 

recognition accuracy compared to the 2DPCA method. This recognition accuracy is 

maintained with up to 40% salt and pepper noise added to the tested images , and up 

to 80 gray level white Gaussian additive noise added to the tested images figure 3-10. 
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Table 3-5  :    Recognition accuracy results employing TD2DPCA, 2DPCA and PCA 

methods for , Experiments I and II, on the ORL database. 

 
 

Recognition 
accuracy 

for experiment I 
 

Recognition 
accuracy 

for experiment II 

  
Method  

 
 

  
73.61 % 

 

 
92.0 % 

 
TD2DPCA  

 
  

72.77 % 
 

 
91.0 %  2DPCA 

   
62.8 % PCA 

 

 
83.5 % 
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Table 3-6  : Dimensions of feature matrix and number of multiplications required for 

N training images for, ORL database, experiments I and II. 

 
   

 TD2DPCA  2DPCA 
Dimensions of 
feature matrix 

per image 

 
(20x5) 

 
(112x10) 

Storage 
requirements  
for N  images 

 

 
(20x5)xN 

 
(112x10)xN 

# of 
multiplications  
in the training 

mode 

 
 (57344xN)* 

 
103040xN 

# of 
multiplications 
in the testing 

mode 

 
57344 

 
103040 

 
* Approximate number of multiplications required to compute the Ti’s and the BBi’s . 
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Table 3-7  :  Recognition accuracy, storage requirements and computational 

complexity for  experiment III, on the Yale database. 

 
 

  TD2DPCA  2DPCA 
  

Recognition accuracy 
 

 
78.8 % 

 
77.7 %  

 
 Dimensions of 

feature matrix per 
image 

 

 
(50x5) 

 
(243x20)  

 
 
 Storage requirements 

for N  images 
 

 
(50x5)xN 

 
(243x20)xN 

# of multiplications   
in  the training mode 

 
 (262144xN)* 

 
1555200XN 

 
# of multiplications   
in  the testing mode  

 
262144 

 

 
1555200 

 
 
 

 
 
 
 
 
 

 
 

* Approximate number of multiplications required to compute the Ti’s and the BBi’s . 
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Figure 3-11  :    Thirty-two noisy facial images 
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3.4   Conclusions: 
 

 

A 2DPCA technique, in the transform domain, is presented for classification and 

recognition. It possesses attractive properties, namely, reduced storage requirements 

and computational complexity while yielding high accuracy. The application of the 

proposed method to the important problem of facial recognition is given. The fast two 

dimensional DCT is employed to implement the algorithm. Results for the ORL, 

Yale, and UMIST databases are given which confirm the excellent properties of the 

proposed approach. 

It is worthwhile to note that the TD2DPCA approach is applicable to the 

classification and recognition of other types of signals.   
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CHAPTER 4    TRANSFORM DOMAIN TWO DIRECTIONAL 
TWO DIMENSIONAL 2DPCA (TD/2D2DPCA) AND MODIFIED 

TD2DPCA (M-TD2DPCA) ALGORITHMS 
 
 

4.1  Introduction 
 

In 1991 Turk and Pentland [3] developed the Eigenfaces method based on the 

principal component analysis (PCA) or  Karhunen-loeve expansion  [1,2] for face 

recognition. The main idea of PCA is to find the vectors that best account for the 

distribution of face images within the entire image space. This technique yielded 

good accuracy despite variations in the pose, illumination and face expressions. In 

2004 Yang et al [15] proposed a two dimensional PCA technique (2DPCA) that 

processes  images in 2D rather than in 1D as the eigenfaces (PCA) method [3]. The 

2DPCA technique is working in the row direction of images. The  2DPCA technique 

has shown a higher recognition accuracy with a faster computational speed [15]. 

However, the storage requirements  are more than that required by the PCA method.  

 

Recently the Two-Directional Two-Dimensional PCA (2D2DPCA) method was 

introduced, that simultaneously considers the row and column directions of the image 

matrix [25]. This method, compared to the 2DPCA, reduced the storage requirements 

while maintaining the same recognition accuracy [ 19 ].  
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In chapter three, we introduced the TD2DPCA algorithm that reduced the storage 

requirements by almost 90 percent and reduced the computational speed by a factor 

of two, compared to the 2DPCA method, while maintaining the same high accuracy. 

 

In this Chapter a Transform Domain Two-Directional Two-Dimensional Principal 

Component Analysis (TD/2D2DPCA) algorithm applied to facial recognition is 

presented. This algorithm has attractive properties with respect to storage and 

computational requirements, while maintaining the high recognition accuracy 

achieved before. The storage requirements are reduced by more than 95 percent 

compared to the spatial 2DPCA method and 75 percent compared to the TD2DPCA  

algorithm. The computational speed, compared to the spatial 2D2DPCA method, is 

reduced to a great deal.  Experimental results obtained by applying the new algorithm 

to the ORL and Yale databases confirm these excellent characteristics. 

 

Section 4.2 presents the proposed algorithm. and discusses the results obtained by 

testing the new algorithm on the ORL and Yale databases.    

In Section 4.3 we present the Modified- TD2DPCA (M-TD2DPCA ) algorithm [20]. 

The M-TD2DPCA method presents a new way of calculating the covariance matrix 

of the training images. This approach reduced the computational complexity required 

to calculate the covariance matrix while maintaining good accuracy. Experimental 

results confirm this. Section 4.4 presents the conclusions.  
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4.2   The TD/2D2DPCA algorithm 
 

The TD/2D2DPCA algorithm deals with the coefficients representing the images in 

the transform domain, in both the row and column directions (the TD2DPCA 

algorithm was working on the row direction only).   This approach maintains the 

relation between these coefficients, which yields a better representation of the images 

and their covariance matrix, where energy is compacted in as small number of 

coefficients. This reflects into a considerable reduction in the coefficients required to 

represent the images (feature matrices). Consequently, the computational and storage 

requirements are further simplified, compared with the excellent TD2DPCA.  The 

algorithm is described in the following sections. 

 

4.2.1   Training mode 
       

In the training mode, the features of the data base are extracted and stored as 

described by steps 1 through 5. 

 

Step 1: The suitable transform (Tr), such as DCT, is applied to each  m x n image Ai 

of the N training images, yielding Ti    (i=1 to N). 

                                                   (4.1)      }{
−

−= AATrT ii

  Where  is the mean matrix, of all the N training images. 
−
A
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Step 2: The covariance matrices, S’r and S’c ,for the N training images are calculated 

as follows. 

 

          

              )()(1
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The transform is chosen such that most of the energy in Sr and  Sc  is concentrated in a 

much smaller submatrices , S’r and  S’c , (upper left corner of Sr and  Sc ) of 

dimensions n’ x n’ . 

 

Step 3:  Vr  and  Vc  are obtained using the  sets of k’ eigenvectors ,of size n’ , 

corresponding to the largest k’   eigenvalues for S’r and  S’c   , respectively. 
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Step 4:  The feature matrices of the training images BBi are calculated  

  

BBi = [Y1,i ,Y2,i ,…Yk’,i ]                                                   (4.4) 

where 

Yj,i = Vc
T Ai’ Vr       j =1,2,….k’  and   i = 1,2,..N        (4.5)              

 

The Bi   matrices are stored .                                  

 

It is worthwhile to note that the feature matrix representing the training image has 

dimensions much lower than those obtained using the spatial 2D2DPCA method 

(n’<<n , and now k’  is smaller). 
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4.2.2   Testing mode 
 

In the testing mode a facial image At is presented to the system to be identified. The 

following steps are followed 

 

Step 1  The same transform used in the training mode is applied to At . 

 

Step 2  The sub matrix At’  containing the significant coefficients is obtained 

(dimension n’ x n’ ) 

 

Step 3  The feature matrix BBt for the testing image is calculated  

 

BBt  = [Y1,t ,Y2,t  ,…Yk’,t ]                                             (4.6)              

where 

Yj,t = Vc
T Tt’ Vr                        j =1,2,….k ‘              (4.7)           

 

Step 4  Distance measures, such as the Euclidean distances, between the feature 

matrix of the testing image and the feature matrices of the training images are 

measured . The minimum distance  represents the image to be identified. 
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4.2.3   Experimental Results and Analysis 
 

The TD/2D2DPCA algorithm was tested using the ORL and Yale datasets [8,9]. 

Results are compared with the TD2DPCA and 2DPCA methods. 

 

Two experiments, I and II, have been applied to the ORL dataset, where all the 

images are grayscale with 112 x 92 pixels each. 

In experiment I, 40 images of 40 different individuals are used for training, and the 

remaining 360 images are used for testing. A two-dimensional discrete cosine 

transform (DCT) is applied to the N training images. The dimensions that give 

comparable results with the 2DPCA method, of A'i and the covariance matrices, S’r 

and  S’c , are 20x20. The 5 largest eigenvectors, of   Sr  and  Sc corresponding to the 5 

largest eigenvalues are obtained. In our approach k’ of only 5 was needed relative to k 

= 10 in other approaches. 

 

The feature matrices for all the training images are obtained and stored using (eq. 4.4) 

and (eq. 4.5 ).  

 

 The procedure in section 4.2.2 is followed for the 360 testing images.  Results are 

listed in Tables 4-1 and 4-2. 
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In experiment II, on the ORL database 5 images per individual are used for training, 

and the remaining 200 images are used for testing. The Dimensions of A’i and , S’r 

and  S’c , are the same as in the first experiment.  

Results are listed in Tables 4-1 and 4-2.  

 

In the experiment applied to the Yale database the dimensions of the images used are 

243x320. Five images per individual are used for training and the remaining images 

are used for . For satisfying accuracy, the dimensions of Sr and Sc are (50x50), and the 

dimensions of Ti’ is (50x50). k’  is chosen equal to 5. For the 2DPCA method, k 

equals 20 is used for the best recognition accuracy. Results are listed in Tables 4-3. 

 

Tables 4-1 and 4-2 show that the proposed algorithm yields good recognition 

accuracy compared to the TD2DPCA and 2DPCA methods.   

 

Table 4-2, 4-3 illustrates the storage requirements, in terms of the dimensions of the 

feature matrix. It is seen that, for the TD2D2DPCA, the amount of storage is reduced 

by approximately 95 %, compared to the 2DPCA method and 75% compared to the 

TD2DPCA algorithm. Also it is worthwhile to note that the computational 

requirements in the training and testing modes compared to number of multiplications  

are reduced to a great deal.  
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 Table 4-1 :  Recognition accuracy for experiment I and II on ORL dataset 

using,TD/2D2DPCA,TD2DPCA, 2D2DPCA and 2DPCA  

 
 

 
 

Method 

 
Recognition 

accuracy 
for experiment I 

 
Recognition  

accuracy 
for experiment  II 

TD/2D2DPCA 73.80 % 92.20 % 

TD/2DPCA 73.61 % 91.94 % 

2D2DPCA 73 % 90.5 % 

2DPCA 72.77 % 91.00 % 
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Table 4-2: Dimensions of feature matrix and number of computations required for the 

training and testing modes on ORL dataset, for experiments I, II.  

 
 TD2DPCA 2DPCA TD/2D2DPCA 

Dimensions of 
feature matrix 
per image 

 
(20x5) 

 
(112x10) 

 
(5x5) 

Storage 
requirements 
for N  images    
 

 
(20x5)xN 

 
(112x10)xN

 
(5x5)xN 

# of 
multiplications 
required for the 
training mode 

 
(57344xN)*

  

 
103040xN 

  

 
(57844xN)* 

  

# of 
multiplications 
required for the  
testing mode 

 
57344 ** 

 

 
103040 

 

 
57844 ** 

 

 
* Approximate number of multiplications required (including those needed to 
compute the transform of the N images) 
** Including  number of multiplications required to compute the transform of the 
tested image 
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Table 4-3 : Recognition accuracy for experiment on Yale dataset 

employing,TD/2D2DPCA, TD2DPCA and 2DPCA  

 
 

 TD2DPCA 2DPCA TD/2D2DPCA 

Recognition 
accuracy 

 
78.8 % 

 
77.7 % 

 

 
78.8 % 

Dimensions of 
feature matrix 
per image 
 

 
(50 x 5) 

 

 
(243 x 20) 

 
(5 x 5) 

 

Storage 
requirements for 
N  images    

 

 
(50x5)xN 

 

 
(243x20)xN 

 
(5x5)xN 

 

# of 
multiplications 
for training 
mode 

 

 
 (262144xN)* 

 
1555200XN 

 
(263394xN)* 

#of 
multiplications 
for testing mode 

 
262144 ** 

 
1555200 

 
263394 ** 

 
* Approximate number of multiplications required (including those needed to 
compute the transform of the N images) 
** Including number of multiplications required to compute the transform of the 
tested image 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 57



 
 
 
 

4.3   M-TD2DPCA 
 

4.3.1  Introduction 
 
 
A modified transform-Domain Two dimensional Principal Component Analysis M-

TD2DPCA algorithm is presented. The proposed algorithm maintains the improved 

performance of the TD2DPCA technique while considerably reducing the 

computational requirements in the training mode. This has been confirmed 

experimentally.  

 

An alternative formulation of the images autocorrelation matrix is introduced which 

further reduces the computational requirements to obtain the images autocorrelation 

matrix by a factor of N, where N is the number of images in the database, relative to 

the TD2DPCA.   
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4.3.2   The Proposed algorithm 
 

The algorithm is described in the following section. 

 

4.3.2.1 Training mode 
       

In this mode, the system is trained with a set of N facial images . The features of the 

data base are extracted and stored as described by steps 1 through 5. 

 

 

Step 1: The suitable transform (Tr) is applied to each  m x n image Ai of the N training 

images, yielding Ti    (i=1 to N). 

                                                     

 

Step 2: The transform is chosen such that the significant coefficients of Ti are 

contained in a submatrix, Ai’, (upper left part of Ti) of dimension n’ x n’. Thus Ai’ is 

used to replace Ai in our algorithm. 

 

Step 3: The covariance matrix S’ for the N training images is calculated  as follows. 
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The transform is chosen such that most of the energy in S is concentrated in a much 

smaller submatrix , S ’, (upper left corner of S ) of dimensions n’ x n’ , where n’ is 

much smaller than m and n. Then, S’ is used to replace S in our algorithm. 

 

Step 4: A set of k’ eigenvectors, Vj (j=1 to k’)  corresponding to the largest k’ 

eigenvalues of  S’ is obtained. Vj is an  n’ x 1  vector. 

 

Step 5:  The feature matrix, BBi (i=1 to N), for each training image is calculated.  

  

BBi = [Y1,i ,Y2,i ,…Yk’,i ]                                                         (4.10) 

 

where 

 

Yj,i = Ti’Vj       j =1,2,….k’  and   i = 1,2,..N                     (4.11)              

 

The Bi   matrices ( i=1 to N ) are stored .                                  
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4.3.2.2  Testing mode  
 

In the testing mode a facial image At is presented to the system to be identified. The 

following steps are followed 

 

Step 1  The same transform used in the training mode is applied to At which yield Tt. 

 

Step 2  The sub matrix Tt’  containing the significant coefficients is obtained 

(dimension n’ x n’ ) 

 

Step 3  The feature matrix BBt for the testing image is calculated  

 

BBt  = [Y1,t ,Y2,t  ,…Yk,t ]                                              (4.12)              

where 

Yj,t = Tt’ Vj                          j =1,2,….k                     (4.13)           

 

Step 4 Distance measures, such as the Euclidean distances, between the feature matrix 

of the testing image  and the feature matrices of the training images are measured. 

The stored image that produces the minimum distance   represents the  image to be 

identified. 
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4.3.3   Experimental Results and Analysis 
 

The proposed algorithm was applied to the ORL and Yale databases.  Results are 

compared with the TD2DPCA and 2DPCA methods. 

 

Two experiments have been applied to the ORL database, where all the images are 

grayscale with 112 x 92 pixels each. 

 

In the first experiment, 40 images of 40 different individuals are used for training and 

the remaining 360 images are used for testing. A two-dimensional discrete cosine 

transform (2D-DCT) is applied to the N training images. The dimensions of T'i and 

the covariance matrix S’ are 20x20. The 5 eigenvectors of S’ corresponding to the 5 

largest eigenvalues are obtained. In our approach k’ of only 5 was needed relative to k 

= 10 in 2DPCA method. 

The feature matrices for all the training images are obtained using (4.10) and (4.11).  

 

 The procedure in section 4.3.2.2 is followed for the 360 testing images. Results are 

listed in Tables 4-4 and 4-5. 
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In the second experiment on the ORL database 5  images per class are used for 

training, and the remaining 200 images are used for testing. The Dimensions of T’i 

and S are the same as in the first experiment. Results are listed in Tables 4-4 and  4-5.  

 

In the experiment applied to the Yale database the dimensions of the images used are 

243x320. Five images per class are used for training and the remaining images are 

used for testing. The Dimensions of S is (50x50), and the dimension of Ti’ is (50x50). 

K’  is chosen equal to 5. For the 2DPCA method, k equals 20 is used  for the  best 

recognition accuracy. Results are listed in Table 4-6. 

 

 

Tables 4-4 and 4-6 show that the proposed algorithm maintains the good recognition 

accuracy of the TD2DPCA and 2DPCA methods.   

Tables 4-5, 4-6 illustrate the storage requirements, in terms of the dimensions of the 

feature matrix. It is seen that, for the Proposed M-TD2DPCA and TD2DPCA, the 

amount of storage is drastically reduced (by approximately 90%), compared with, 

2DPCA . Also it is worthwhile to note that the computational requirements for the 

covariance matrix  in the training mode employing  the proposed algorithm is reduced 

by a factor of N compared to the TD2DPCA algorithm. This reduction is particularly 

important when the number of images N in the databases is large. This is frequently 

encountered in practice. 
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Table 4-4 : Recognition accuracy for experiment I and II on ORL database using,  

M-TD2DPCA, TD2DPCA, and 2DPCA methods 

 
Method  

Recognition 
accuracy 

for experiment I 

 
Recognition 

accuracy 
for experiment 

II 

 
M-TD2DPCA 

 
73.05 % 

 

 
91.68 % 

 
TD2DPCA 

 
73.61 % 

 

 
92.0 % 

 
2DPCA 

 
72.77 % 

 

 
91.0 % 
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Table 4-5 : Dimensions of feature matrix and number of computations required for 

the training and testing modes on ORL database, for experiments  I , II. 

 

 

 
  

M-TD2DPCA 
 

 
TD2DPCA 

 
2DPCA 

 
Dimensions of 

feature matrix per 
image 

 
(20x5) 

 
(20x5) 

 
(112x10) 

 
Storage requirements 

for N  images 
 

 
(20x5)xN 

 
(20x5)xN 

 
(112x10)xN 

 
# of multiplicatn 
required for the 
training mode 

 
(57344xN)** 
+ (103040) * 

[independent of N] 

 
(57344xN)**+  
(103040xN)* 

 

 
947968xN 

+103040xN 
 

 
# of multiplicatn 
required for the  

testing mode 

 
57344 

 

 
57344 

 

 
103040 

 

 
 
 

* Approximate number of multiplications  required to compute the covariance matrix 
** Approximate number of multiplications required to compute the transform of the N images 
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Table 4-6 : Recognition accuracy, dimensions of feature matrix and number of 

computations required for the training and testing modes  for experiment on  

Yale database employing, M-TD2DPCA, TD2DPCA, and 2DPCA methods  

 
 
 
 
 
 

 
 M-TD2DPCA TD2DPCA 2DPCA 

Recognition 
accuracy 

78.8 % 78.8 % 77.7 % 

 
 
 
 
 
 
 Dimensions of 

feature matrix 
per image 

 

 
(50 x 5) 

 

 
(50 x 5) 

 

 
(243 x 20) 

Storage 
requirements for 

N  images 
 

 
(50x5)xN 

 

 
(50x5)xN 

 
 
 
 
 
   
 
  

(243x20)xN 

# of multiplicatn 
required for the 
training mode 

 

 
 (262144xN)**+ 

(1555200)* 
[independent of N] 

 

 
 (262144xN)**+ 
(1555200XN) * 

 

 
 
  

18895680xN+ 
1555200XN 

# of multiplicatn 
required for the 

testing mode 

 
262144 

 

 
 
 
 
 
 
 

  
 

262144 1555200  
 
 

 
 

*Approximate number of multiplications  required to compute the covariance matrix 
** Approximate number of multiplications  required to compute the transform of the N images 
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4.4   Conclusions 
 

 
In this contribution a TD/2D2DPCA algorithm is presented for facial recognition. It is 

shown that the new technique retains the high recognition accuracy of the 2DPCA 

and TD2DPCA methods while reducing the storage requirements by 95 percent 

compared to the 2DPCA and 75 percent compared to TD2DPCA. It is worthwhile to 

note that the computational speed has been reduced by a great deal relative to 2DPCA 

algorithm. Experimental results confirm these excellent characteristics. 

 

In addition a modified transform domain two dimensional principal component 

analysis   (M-TD2DPCA)  algorithm is described and applied to facial recognition. 

The proposed technique, while maintaining the excellent characteristics of the 

recently reported TD2DPCA approach , it requires much fewer computations to 

obtain the images autocorrelation. matrix. Sample results and performance 

comparison with existing techniques are given which confirm the improved 

performance of the M-TD2DPCA. 
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CHAPTER 5 TRANSFORM DOMAIN TWO DIMENSIONAL 
PRINCIPAL COMPONENT ANALYSIS IN CONJUNCTION 

WITH VECTOR QUANTIZATION (TD2DPCA/VQ) 
  

5.1  Introduction 
 

In this chapter we present an algorithm that uses the TD2DPCA analysis in 

conjunction with vector quantization (TD2DPCA/VQ). This method benefits from 

both the TD2DPCA analysis and vector quantization. TD2DPCA analysis results 

in considerable reduction in the coefficients required to represent the images. 

Consequently, the computational and storage requirements are greatly simplified. 

Vector quantization is an efficient way to group vectors representing different 

signals.    

A technique is developed which combines VQ [73] with transform domain 

principal component representation in the training mode. This results in 

drastically increasing the speed of recognition in the testing mode. The algorithm 

is described in the following sections.  

 

In section 5.1 we present a brief description of VQ . In section 5.2  a tree structure 

TD2DPCA/VQ-1 algorithm is presented. Experiment results confirm the excellent 

properties of the proposed techniques. Section 5.3 presents a TD2DPCA/VQ-2  

algorithm [22] used when more than one image per individual is employed to 

train the system . Conclusions are discussed in section  5.4.  
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5.1.1  Classification Decision Tree 
 
 
Decision trees are considered one of the most popular classification approaches due to 

their accuracy and simplified computational properties [84, 89, 92]. Moreover, they 

are fast in training [65]. They are capable of performing non-linear classification [74] 

and they do not rely on statistical distribution. This has yielded successful 

applications in many fields such as remote sensing data [83].  

 

The tree is composed of a root node, intermediate nodes and terminal nodes. The data 

set is classified at each node according to the decision framework defined by the tree 

[23]. It starts with a coarse classification, and then followed by a fine classification 

where finally each group contains only one signal. 

 

Classification decision trees have the advantages of employing more than one feature. 

Each feature provides partial information about the signal. The combination of such 

features can be used to obtain accurate recognition decision [91]. There are more than 

one decision tree that can be used for a given example. But the smaller the decision 

tree, the better it becomes [90].  

 

A large number of methods have been proposed in the literature for the design of the 

classification tree. Classification and Regression Trees (CART) is one of the 

approaches that have achieved high popularity [72]. It was developed during the years 

1973 through 1984 [4]. It has the advantage of constructing classification regions 

with sharp corners. However, it is computationally expensive [76]. In this approach, 
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splitting continues until terminal nodes are reached. Then, a pruning criterion is used 

to sequentially remove splits [74]. Pruning can be implemented by using different 

data than those used in training. The main advantages of pruning is reducing the size 

of the decision tree [93] and hence reducing the classification error [72] and avoiding 

both overfitting and underfitting.   

 

Most of the pruning methods proposed in the literature are based on removing some 

of the nodes of the tree. Kijsirikul et al. [77] have introduced a pruning method which 

employs neural networks, trained by backpropagation algorithm, to give weights to 

nodes according to their significance instead of completely removing them. 

 

5.1.2   Vector quantization 
 
 
Vector quantization is a powerful technique for data compression. Recently, it has 

been used to simplify image processing tasks such as halftoning, edge detection [58], 

image recognition [77] and enhancement classification. 

 

Vector Quantization and Classification can be combined because both techniques can 

be designed and implemented using methods from statistical clustering and 

classification trees [82]. They can be implemented with a tree structure that greatly 

reduces the encoding complexity [90]. It has been shown that if an optimal vector 

quantizer is obtained, under certain design constraints and for a given performance 

objective, no other coding system can achieve a better performance. This approach 

 70



has several advantages in coding and in reducing the computation in speech 

recognition [38].  

 

One of the most widely used algorithms is the Lloyd algorithm. It improves a 

codebook by alternately optimizing the encoder for the decoder and the decoder for 

the encoder [72].  

Linear Vector Quantization (LVQ) has been used to classify the various kinds of 

signals. The reasons to use the LVQ are that it can process the unsupervised 

classification and treat many input data with small computational burden [71]. In 

other words, it can treat high dimensional input and has a simple learning structure. 

 

A LVQ is composed of two layers; a competitive layer that learns the feature space 

topology and the linear layer that transforms classes into target classes. It can be used 

as a method for training competitive layers of the unsupervised neural network model 

developed by Kohonen, called Self-Organizing Map (SOM), in a supervised manner. 

It also has the advantage of increasing the classification accuracy of the SOM 

network [76]. 
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5.1.3    The K-MEANS clustering algorithm 
  
 
The K-MEANS algorithm is one of the classification techniques that have been 

introduced in the literature. It is partially supervised because the number of clusters is 

predefined. 

 

In order to clusters M feature vectors into G clusters, assume a data set of M vectors, 

vi, i=1, 2 …M of dimensionality 1 X N. 

 

Algorithm 
 
1) Select G such that G < M     (5.1) 

 

2) Define the clusters centers cg , g = 1,2…G  (5.2) 

 

3) Associate each of vectors vi to the closest center according to a distance measure. 

There are several distance measures defined in the literature. Euclidean distance is 

often used because of its simplicity. 

 

4) The Euclidean distance D between two vectors v1= {v1,1, v1,2… v1,N) and v2= {v2,1, 

v2,2… v2,N) is defined as  

 

(
2

1
,2,1

1 ∑
=

−=
N

i
ii vv

N
D )       (5.3) 
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5) The new cluster center cg is the average of all vectors that belongs to this cluster. 

 

∑
=

=
gN

i
i

g

new

g v
Nc

1

1       (5.4) 

 

where Ng is the numbers of vectors belonging to gth cluster. 

 

6) The algorithm is repeated until the change in centers is not significant.  
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5.2  TD2DPCA/VQ-1  tree structure classifier : at each tree node, the subset of 
subjects are divided into two groups 

 
 

5.2.1  Training Mode 
 

In the training mode, the features of the data base are extracted, stored, and 

grouped as described by steps 1 through 7. 

 

Step 1: The suitable transform (Tr) is applied to each m x n image Ai of the N 

training images, yielding Ti    (i=1 to N). 

                                                    (5.5)      }{
−

−= AATrT ii

  Where  is the mean matrix, of all the N training images. 
−
A

 

Step 2: The transform is chosen such that the significant coefficients of Ti are 

contained in a submatrix, Ti’, (upper left part of Ti) of dimension n’ x n’. Thus Ti’ 

is used to replace Ai in our algorithm. 

 

Step 3: The covariance matrix S for the N training images is calculated using 

(5.6). 
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Step 4: A set of k eigenvectors, V= [V1 , V2 … Vk ] of size n’ corresponding to the 

largest k eigenvalues is obtained for S. 

 

 

Step 5:  The feature matrices of the training images BBi are calculated in (5.8) and 

(5.7), 

  

Yj,i = Ti’Vj       j =1,2,….k  and   i = 1,2,..N           (5.7)              

BBi = [Y1,i ,Y2,i ,…Yk,i ]                                              (5.8)                                   

 

 

It is worthwhile to note that the feature matrix representing the training image has 

dimensions much lower than those obtained using the spatial 2DPCA method 

(n’<<n , and now k’ <<k). 

 

Step 6: Vector quantization is employed to group the feature vectors, Yj,i, (i= 1 to 

N), representing the training images, Where a tree of VQ codebooks, using Yj,i, are 

constructed as shown in figure 4.1  

 

 

Step 7:  The vectors representing the centroids of all groups are stored.  
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Figure 5-1 :  A tree of VQ codebooks employing Y1,i
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5.2.2    Testing Mode 
 

In the testing mode a facial image At is presented to the system to be identified. 

The following steps are followed 

 

Step 1  The same transform used in the training mode is applied to At which yield 

Tt. 

 

Step 2  The submatrix Tt’  containing the significant coefficients is obtained 

(dimension n’ x n’ ) 

 

Step 3  The feature matrix BBt for the testing image is calculated from 

 

Yj,t = Tt’ Vj                          j =1,2,….k ‘             (5.9)           

 

BBt  = [Y1,t ,Y2,t  ,…Yk,t ]                                        (5.10)              

 

Step 4 Distance measures, such as the Euclidean distances, between the feature 

vectors of the testing image Yj,t  and the centroids, are computed. The group 

corresponding to the minimum distance is determined. The tested image is 

assigned to that group.  
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5.2.3   Experimental Results And Analysis 
 

The proposed algorithm was applied to the ORL database . Results are compared 

with those obtained using TD2PCA without employing VQ and existing 

techniques, namely, the 2DPCA, and PCA . 

 

Two experiments have been applied to the ORL database, where all the images 

are grayscale with 112 x 92 pixels each. 

In the first experiment, 40 images of 40 different individuals are used for training 

and the remaining 360 images are used for testing. A two-dimensional discrete 

cosine transform (DCT) is applied to the N training images. The dimensions of T'i 

and the covariance matrix S are 20x20. The 5 largest eigenvectors of S 

corresponding to the 5 largest eigenvalues are obtained. In our approach k of only 

5 was needed relative to k = 10 in other approaches, while even achieving better 

recognition accuracy. 

The feature matrices for all the training images are obtained using (5.7) and (5.8).  

A tree of VQ codebooks, using Y1,i, (i= 1 to N), are constructed as shown in Figure 

5-1 , where Y1,i, are used to represent the images 

 

 The procedure in section 5.2.2 is followed for the 360 testing images. Results are 

listed in Tables 5-1 and 5-2. 
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In the second experiment 5 images per class are used for training and the 

remaining 200 images are used for testing. The Dimensions of T’i and S’ are the 

same as in the first experiment. Results are listed in Tables 5-1 and 5-2 

 

Table 5-1 shows that the proposed algorithm yields better recognition accuracy 

than the TD2DPCA , and 2DPCA method.     

Table 5-2 illustrates the storage requirements, in terms of the dimensions of the 

feature matrix. It is seen that, for the TD2DPCA/VQ and TD2DPCA, the amount 

of storage is drastically reduced (by approximately 90%), compared with one of 

the best available algorithm, 2DPCA. In addition the new technique drastically 

improves the recognition speed in the testing mode. It can be easily shown that in 

contrast with other techniques, the number of steps required to uniquely identify 

an unknown facial image is considerably reduced by almost 75%. Consequently, 

TD2DPCA/VQ lends itself to facial recognition of large databases. 
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Table 5-1 : Recognition accuracy for experiment I and II on ORL database using 

TD2DPCA/VQ-1 ,TD2DPCA, 2DPCA and PCA methods. 

 
   

Method  
Recognition 

accuracy 
for experiment I 

  
Recognition  

accuracy  
for experiment II 

 

 
TD2DPCA/VQ-1 

 
79.25 % 

  

 
92.8 % 

 
TD2DPCA 

 
 

 
73.61 % 92.0 % 

 
2DPCA 

 
 

 
72.77 % 91.0 %  

 
PCA 

 
62.80 % 

 
 

 
 

83.5 % 
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Table 5-2 : Dimensions of feature matrix and number of computations required for 

the testing mode on ORL database, for experiments  I, II.  

 

TD2DPCA/VQ 2DPCA 
Dimensions of 
feature matrix per 
image 

 
(20x5) 

 
(112x10) 

Storage 
requirements for N  
images    
 

 
(20x5)xN 

 
(112x10)xN 

# of multiplications 
for the testing mode 

 
57344 

 

 
103040 

 

# of  comparisons 
for the testing mode 

10 40 
(experimental) 
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5.3   TD2DPCA/VQ-2  classifier  
 

 
 
The proposed algorithm is used when more than one image is used to train the 

system. It realizes excellent feature reduction properties by exploiting images and 

covariance matrices representation in the Transform domain as well as vector 

quantization (VQ). Consequently, the computational and storage requirements are 

greatly simplified as will be shown later. The algorithm is described below. 

 

5.3.1  Training mode 
 

       

In the training mode, the features of the data base are extracted, stored, and 

grouped as described by steps 1 through 7. 

 

Step 1: The suitable transform (Tr) is applied to each  m x n image Ai of the N 

training images, yielding Ti    (i=1 to N). 

                                                  (5.7)      }{
−

−= AATrT ii

Where  is the mean matrix, of all the N training images. 
−
A
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Step 2: The transform is chosen such that the significant coefficients of Ti are 

contained in a submatrix, Ti’, (upper left part of Ti) of dimension n’ x n’. Thus Ti’ 

is used to replace Ai in our algorithm. 

 

Step 3: The covariance matrix S’ for the N training images is calculated using (8). 
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N
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=
                         (5.8) 

S’ is the submatrix containing the significant coefficients of S (upper left part of 

S), dimension n’x n’. 

 

Step 4:  A set of k eigenvectors, V= [V1 , V2 … Vk ] of size n’ corresponding to the 

largest k eigenvalues is obtained for S’. 

 

Step 5:  The feature matrices of the training images BBi are calculated in (9) and 

(10), 

  

Yj,i = Ti’Vj       j =1,2,….k  and   i = 1,2,..N             (5.9)              

BBi = [Y1,i ,Y2,i ,…Yk,i ]                                               (5.10)                                   
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Step 6:  Employing vector quantization [75], one centroid , Ci ( i=1 to N ), per 

individual  is obtained by grouping the feature vectors, representing the different  

training images per individual (number of poses, P ) into one group figure 5-2 . In 

this work, to illustrate our technique,  only the first feature vector, Y1,i , is used  

for grouping the images.  In future work, the system will be implemented using 

more feature vectors. 

 

Step 7:  All vectors representing the centroids , Ci ( i=1 to N ), are stored. 

 

5.3.2  Testing mode  
 

In the testing mode a facial image At is presented to the system to be identified. 

The following steps are followed 

 

Step 1  The same transform used in the training mode is applied to At which yield 

Tt. 

 

Step 2  The sub matrix Tt’  containing the significant coefficients is obtained 

(dimension n’ x n’ ) 

 

Step 3  The feature matrix BBt for the testing image is calculated from 

 

Yj,t = Tt’ Vj                          j =1,2,….k               (5.11)           
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BBt  = [Y1,t ,Y2,t  ,…Yk,t ]                                        (5.12)              

 

Step 4 Distance measures, such as the Euclidean distances, between the feature 

vectors of the testing image Yj,t  and the centroids, are computed. The group 

corresponding to the minimum distance is determined. The tested image is 

assigned to that group.  

 

5.4   Experimental Results and Analysis 
 

The proposed algorithm was applied to the ORL database  and the Yale database.  

Two experiments have been performed. In Experiment I , the ORL database is 

used, where all the images are grayscale with 112 x 92 pixels each. In Experiment 

II, the Yale database is used, where all the images are grayscale with 243 x 320 

pixels each. 

In experiment I, 200 images of 40 different individuals are used for training (five 

images per individual, P=5 ) and the remaining 200 images are used for testing. A 

two-dimensional discrete cosine transform (DCT) is applied to the N training 

images. The dimensions of T'i and the covariance matrix S’ are 20x20. The 5 

largest eigenvectors of S’ corresponding to the 5 largest eigenvalues are obtained.  

The feature matrices for all the training images are obtained. 
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Employing vector quantization, one centroid per individual, Ci ( i=1 to N ), is 

obtained by grouping the feature vectors, representing the five training images per 

individual, into one group.  

 

In experiment II, 75 images of 15 different individuals are used for training (five 

images per individual, P=5) and the remaining 90 images are used for testing. A 

two-dimensional discrete cosine transform (DCT) is applied to the N training 

images. The dimensions of T'i and the covariance matrix S’ are 50x50. The 5 

largest eigenvectors of S’ corresponding to the 5 largest eigenvalues are obtained.  

The feature matrices for all the training images are obtained using (9) and (10).  

Again, employing vector quantization, one centroid per individual is obtained by 

grouping the feature vectors, representing the five training images per individual, 

into one group.  

 

In experiment I, II , only the first feature vector (Y1,i,) is used  for grouping the 

images. All vectors representing the centroids , Ci ( i=1 to N ), are stored.  

 

Table 5-3, illustrates that for the TD2DPCA/VQ method the amount of storage is 

reduced by a factor of 5 , (corresponding to P = 5), compared with one of the best 

available algorithms, TD2DPCA. In addition, the new technique increases the 

recognition speed by a factor of 5.  
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Due to the considerable reduction in the number of steps required to uniquely 

identify an unknown facial image the new TD2DPCA/VQ-2 algorithm lends itself 

to facial recognition of large databases, for real time applications. 
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Figure 5-2  Grouping images employing TD2DPCA/VQ 
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Table 5-3 : Recognition accuracy, storage requirements and computational speed, for 

experiments employing TD2DPCA/VQ-2.  

 
 

 TD2DPCA/VQ TD2DPCA Savings 
Recognition 

accuracy 
for 

experiment I 

 
89.5 % 

 
92 % 

 
Comparable 

Recognition 
accuracy 

for 
experiment II 

 

 
82.2 % 

 
78.8 % 

 
Comparable 

Storage 
requirements 

for 
experiment I 

 

N x  ( n’ x k ) 
 

40 x (20x5) 

(N x P)  x  (n’ x k) 
 

200 x (20x5) 

 
80% 

Storage 
requirements 

for 
experiment II 

 

N x  ( n’ x k ) 
 

15 x (50x5) 
 

(N x P) x  (n’ x k) 
 

75 x (50x5) 

 
80% 

# of  
comparisons 

for the testing 
mode in 

experiment I 
 

 
40 

 

 
200 

 
80% 

# of  
comparisons 

for the testing 
mode in 

experiment II 
 

 
15 

 
 
 

 
75 

 
 
 

 
80% 

 
 
 

 
 

N = number of individuals 
P = number of training images (poses) per individual 

n’ x k = dimensions of the feature matrix 
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5.5  Conclusion 
 

 

The TD2DPCA algorithm for recognition and classification of facial images was 

presented in chapter three. This algorithm reduces the storage requirements by a 

factor of magnitude and the computational complexity by a factor of 2 while 

maintaining the recognition accuracy of the recently, reported spatial domain 

2DPCA algorithm. The compact representation of the images employing the 

proposed algorithm enables the usage of other classification tools, vector 

quantization. This led to TD2DPCA/VQ methods. The TD2DPCA/VQ-1 

classifier reduced the computational requirements in the testing mode. The 

TD2DPCA/VQ-2 further reduces the storage and computational requirements by 

a factor of P where P is the number of training images per individual when more 

than one image per individual are used for training.  

Experimental results using the ORL, YALE databases confirm these excellent 

properties.  
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CHAPTER 6 :  PARALLEL STRUCTURE RECOGNITION 
SYSTEM 

 
 

6.1  Introduction 
 
Recently, due to emerging critical applications such as biomedical, and security 

applications, the area of intelligent signal processing has been receiving considerable 

attention. In this contribution, we present an intelligent signal processing system 

applied to signal recognition and classification [66-89]. The system employs different 

structures, multicriteria and multitransform techniques. In addition, principal 

component analysis in the transform domain in conjunction with vector quantization 

is developed which result in further improvement in the recognition accuracy and 

dimensionality reduction. Experimental results are given which confirm the excellent 

properties of the proposed approaches. 

 

The propose technique can be designed to have evolutionary learning by developing 

the features and selecting the criteria that are best suited for the recognition problem 

under consideration. It is conjectured that, ultimately, it will be capable of 

recognizing an enormously large number of patterns by virtue of the fact that it 

analyzes the signals in different domains and explores the distinguishing 

characteristics in each of these domains. Many criteria are developed from the 

features extracted from the projection of the original and preprocessed signals in 

different domains, as shown in figure 6-1.  
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Based on the selected set of criteria and according to the classification technique 

used, the signals are grouped into a particular number of groups.   

Finally, each signal will be identified by a composite index according to the group 

numbers throughout the classification process. 

 

This Chapter is organized as follows:  Section 6.2 presents the parallel 

implementation grouping structure. In Section 6.3, sample results are given to 

demonstrate the excellent performance of the parallel implementation structure. 

Section 6.4 presents the conclusions.  
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Figure 6-1   The proposed Pattern Recognition System [ 24 ] 
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6.2  The parallel implementation structure 
 

In this implementation, shown in figure 6-2, the pattern recognizer extracts the 

features in parallel, from more than one transform domain. Different classification 

criteria in each domain can be developed using the coefficients in that particular 

domain such as the spectral characteristics, the energy distribution in the different 

transform domain regions, etc. First, a criterion, with adaptable parameters, is 

introduced to the TD2DPCA/VQ-2 classifier. A potentially successful criterion 

with its selected values of the parameters, in a particular domain, clusters the N 

input signals in a number of distinct non-overlapping clusters. The cluster index, 

according to  that criterion, is denoted.  

The TD2DPCA/VQ-2 Classifier learning continues, by testing all the criteria 

presented over the parameters range for each criterion, until a successful set of 

criteria is obtained. A successful parallel structure implementation recognition 

system should yield a unique composite index (c1c2c3…. cD) corresponding to each 

of the N input signals.  

c1 = 1,2,… g1 ,  c2 = 1,2,… g2 , …    cD = 1,2,… gn 

where D is the number of transform domains, and gi  is the number of groups for 

each TD2DPCA/VQ-2 Classifier. 
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Figure 6-2 :  A parallel implementation of the proposed classification technique 
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6.3   Experimental Results and Analysis employing the Parallel Structure System  
 

 

In this experiment, three classifiers have been used to recognize these images. The 

three TD2DPCA/VQ-2 , described in section 5.3, classifiers have the same structure 

but they employ different set of criteria.  

 

• DCT transform: Submatrix  representing the training image contains  20 x 20 low-

frequency components,  

• Haar transform: Submatrix  representing the training image contains  56 x 56 low 

frequency,  

• Haar transform: Submatrix  representing the training image contains  56 x 56 high 

frequency, 

 

The proposed algorithm was applied to the ORL database  and the Yale database. 

Two experiments have been performed.  

In Experiment I, the ORL database is used, where all the images are grayscale with 

112 x 92 pixels each. In Experiment II, the Yale database is used, where all the 

images are grayscale with 243 x 320 pixels each. 

In experiment I, 200 images of 40 different individuals are used for training (five 

images (poses) per individual, P=5) and the remaining 200 images are used for 

testing.  
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For the first TD2DPCA/VQ-2 classifier, a two-dimensional-DCT is applied to the N 

training images. The dimensions of T'i and the covariance matrix S’ are 20x20. The 5 

largest eigenvectors of S’ corresponding to the 5 largest eigenvalues are obtained.  

The feature matrices for all the training images are obtained.  

Employing vector quantization, one centroid per individual, Ci ( i=1 to N ), is 

obtained by grouping the feature vectors, representing the five training images per 

individual, into one group.  

 

For the second ,TD2DPCA/VQ-2 ,classifier, the Haar transform is applied to the N 

training images. The Submatrix  containing  56 x 56 low frequency, representing the 

training image is retained. The dimensions of T'i and the covariance matrix S’ are 

56x56. The 10 largest eigenvectors of S’ corresponding to the 10 largest eigenvalues 

are obtained.  

The feature matrices for all the training images are obtained.  

Employing vector quantization, one centroid per individual, Ci ( i=1 to N ), is 

obtained by grouping the feature vectors, representing the five training images per 

individual, into one group.  

 

For the third , TD2DPCA/VQ-2 , classifier, the Haar transform is applied to the N 

training images. The Submatrix  containing  56 x 56 high frequency, representing the 

training image is retained. The dimensions of T'i and the covariance matrix S’ are 
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56x56. The 10 largest eigenvectors of S’ corresponding to the 10 largest eigenvalues 

are obtained.  

The feature matrices for all the training images are obtained.  

Employing vector quantization, one centroid per individual, Ci ( i=1 to N ), is 

obtained by grouping the feature vectors, representing the five training images per 

individual, into one group.  

 

In experiment II, 75 images of 15 different individuals are used for training (five 

images per individual, P=5) and the remaining 90 images are used for testing.  

 

For the first classifier a two-dimensional discrete cosine transform (DCT) is applied 

to the N training images. The dimensions of T'i and the covariance matrix S’ are 

50x50. The 5 largest eigenvectors of S’ corresponding to the 5 largest eigenvalues are 

obtained.  

Again, employing vector quantization, one centroid per individual is obtained by 

grouping the feature vectors, representing the five training images per individual, into 

one group.  

 

For the second TD2DPCA/VQ-2 classifier, the Haar transform is applied to the N 

training images. The Submatrix  containing  56 x 56 low frequency, representing the 

training image is retained. The dimensions of T'i and the covariance matrix S’ are 

56x56. The 10 largest eigenvectors of S’ corresponding to the 10 largest eigenvalues 

are obtained.  
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The feature matrices for all the training images are obtained.  

Employing vector quantization, one centroid per individual, Ci ( i=1 to N ),is obtained 

by grouping the feature vectors, representing the five training images per individual, 

into one group.  

 

For the third TD2DPCA/VQ-2 classifier, the Haar transform is applied to the N 

training images. The Submatrix  containing  56 x 56 high frequency, representing the 

training image is retained. The dimensions of T'i and the covariance matrix S’ are 

56x56. The 10 largest eigenvectors of S’ corresponding to the 10 largest eigenvalues 

are obtained.  

 

In experiment I and II, only the first feature vector (Y1,i,) is used  for grouping the 

images. All vectors representing the centroids for the three different classifiers, Ci ( 

i=1 to N ), are stored.  

 

Experimental results are compared with results obtained by TD2DPCA/VQ-2, 

TD2DPCA, and 2DPCA methods. 
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As shown in Table 6-1, the recognition accuracy has improved by 1.5 % from the 

previous methods.  

The storage requirements are still less than that that required by TD2DPCA, and 

2DPCA methods. This is achieved at the expense of more computational complexity. 
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Table 6-1 : Recognition accuracy for experiment I and II using the parallel structure 

TD2DPCA/VQ-2 classifiers, TD2DPCA/VQ-2, TD2DPCA, and 2DPCA. 

 

 
 

Method Recognition 
accuracy for 
experiment I 

Recognition 
accuracy for 

experiment  II 
 
Parallel Structure 
implementation  
 

 
93.5% 

 
83.5% 

 
TD2DPCA/VQ-2 
 

 
92.0 % 

 
82.2% 

 
TD2DPCA 
 

 
91.0 % 

 
78.8% 

 
2DPCA 
 

  
83.5 % 77.7% 
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Table 6-2 : Storage requirements for experiment I and II using the parallel structure 

TD2DPCA/VQ-2 classifiers, TD2DPCA/VQ-2, TD2DPCA, and 2DPCA. 

 

 
 

Method Comparison of the  
the storage 

requirements for 
experiment  I 

Comparison of 
 the storage 

requirements for 
experiment  II 

 
Parallel Structure 
implementation  
 

 
3N/5 

 
3N/5 

 
TD2DPCA/VQ-2 
 

 
N/5 

 
N/5 

 
TD2DPCA 
 

 
N 

 
N 

 
2DPCA 
 

 
N 

 
N 
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Table 6-3 : Table 6-4Number of comparisons required per image in the testing mode, 

for experiment I and II using the parallel structure TD2DPCA/VQ-2 classifiers, 

TD2DPCA/VQ-2, TD2DPCA, and 2DPCA. 

 

 
 

Method # of comparisons 
per image required 
in the testing mode 
for experiment  I 

# of comparisons 
per image  required 
in the testing mode  
for experiment  II 

 
Parallel Structure 
implementation  
 

 
3 

 
3 

 
TD2DPCA/VQ-2 
 

 
1 

 
1 

 
TD2DPCA 
 

 
5 

 
5 

 
2DPCA 
 

  
5 5 
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6.4  Conclusions 
 

 

In this contribution, a powerful Intelligent Signal Processing system applied to 

recognition and classification of signals is presented. This includes the different 

aspects of the recognition system: multicriteria, multitransform, principal 

component analysis and Vector Quantization. Sample results are given which 

confirm the excellent performance of the techniques presented in terms of 

recognition accuracy, speed, and storage requirements. 
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CHAPTER 7 CONCLUSIONS AND FUTURE WORK 
 
 

7.1  Conclusions 
 
 
In this contribution, 2DPCA analysis, in the transform domain, is presented for 

classification and recognition of facial images. Several algorithms based on the 

TD2DPCA are presented. Theses algorithms possess attractive properties, namely, 

reduced storage requirements and computational complexity while yielding high 

recognition accuracy.  

 Experimental results on the ORL, Yale, and UMIST databases are given which 

confirm the excellent properties of the proposed approaches. 

It is worthwhile to note that the TD2DPCA approach is applicable to the 

classification and recognition of other types of signals.   

 

The TD2DPCA algorithm for recognition and classification of facial images was 

presented in chapter three. This algorithm reduces the storage requirements by a 

factor of magnitude and the computational complexity by a factor of 2 while 

maintaining the recognition accuracy of the recently, reported spatial domain 2DPCA 

algorithm 

 

In chapter four  a TD/2D2DPCA algorithm is presented for facial recognition. It is 

shown that the new technique retains the high recognition accuracy of the 2DPCA 

and TD2DPCA methods while reducing the storage requirements by 95 percent 

compared to the 2DPCA and 25 percent compared to TD2DPCA. It is worthwhile to 
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note that the computational speed has been reduced greatly relative to 2DPCA 

algorithm. Experimental results confirm these excellent characteristics. 

 

In addition a modified transform domain two dimensional principal component 

analysis   (M-TD2DPCA) algorithm is described and applied to facial recognition. 

The proposed technique, while maintaining the excellent characteristics of the 

recently reported TD2DPCA approach , it requires much fewer computations to 

obtain the images autocorrelation matrix. Sample results and performance comparison 

with existing techniques are given which confirm the improved performance of the 

M-TD2DPCA. 

 

The compact representation of the images employing the TD2DPCA algorithm 

enables the usage of other classification tools, such as vector quantization. This led to 

TD2DPCA/VQ method, as shown in chapter five, which further reduces the storage 

and computational requirements by a factor of P where P is the number of training 

images per individual when more than one image per individual are used for training. 

Experimental results using the ORL, YALE databases confirm these excellent 

properties.  

 

In chapter six, a powerful Intelligent Signal Processing system applied to recognition 

and classification of signals is presented. This includes the different aspects of the 

recognition system: multicriteria, multitransform, principal component analysis and 

Vector Quantization. Sample results are given which confirm the excellent 
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performance of the techniques presented in terms of recognition accuracy, speed, and 

storage requirements. 

 

7.2  Future work 
 
 

Although different types of criteria and classification methods have been 

examined, throughout this dissertation, still, more work must be done to examine 

more criteria and more classification techniques to enhance the performance of 

the suggested pattern recognition systems for all types of problems. 

 

In addition, a self-designing cascaded implementation, shown in Fig. 7-1, needs to 

be examined. When the classification process is completed, each signal should be 

represented by a unique composite index, corresponding to the signal path 

through the decision tree, from the input to one of the terminal nodes of the tree. 

Classification techniques such as vector quantization or neural networks could be 

used in conjunction with TD2DPCA method [90-107]. 
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Figure 7-1:  Self-designing cascaded implementation 
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APPENDIX 
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An simplified example of the SD-TD2DPCA Algorithm using Matlab 
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SD-TD2DPCA Algorithm 
 
 
 
x1=imread('C:\ image\image1\s1\1.bmp'); 
x2=imread('C:\ image\image1\s2\1.bmp'); 
x3=imread('C:\ image\image1\s3\1.bmp'); 
x4=imread('C:\ image\image1\s4\1.bmp'); 
x5=imread('C:\ image\image1\s5\1.bmp'); 
x6=imread('C:\ image\image1\s6\1.bmp'); 
x7=imread('C:\image\image1\s7\1.bmp'); 
x8=imread('C:\image\image1\s8\1.bmp'); 
x9=imread('C:\image\image1\s9\1.bmp'); 
x10=imread('C:\image\image1\s10\1.bmp'); 
x11=imread('C:\ image\image1\s11\1.bmp'); 
x12=imread('C:\ image\image1\s12\1.bmp'); 
x13=imread('C:\ image\image1\s13\1.bmp'); 
x14=imread('C:\ image\image1\s14\1.bmp'); 
x15=imread('C:\ image\image1\s15\1.bmp'); 
x16=imread('C:\ image\image1\s16\1.bmp'); 
x17=imread('C: \image\image1\s17\1.bmp'); 
x18=imread('C:\ image\image1\s18\1.bmp'); 
x19=imread('C: \image\image1\s19\1.bmp'); 
x20=imread('C:\ image\image1\s20\1.bmp'); 
x21=imread('C:\ image\image1\s21\1.bmp'); 
x22=imread('C:\ image\image1\s22\1.bmp'); 
x23=imread('C:\ image\image1\s23\1.bmp'); 
x24=imread('C:\ image\image1\s24\1.bmp'); 
x25=imread('C: \image\image1\s25\1.bmp'); 
x26=imread('C: \image\image1\s26\1.bmp'); 
x27=imread('C:\ image\image1\s27\1.bmp'); 
x28=imread('C:\ image\image1\s28\1.bmp'); 
x29=imread('C:\ image\image1\s29\1.bmp'); 
x30=imread('C:\ image\image1\s30\1.bmp'); 
x31=imread('C:\ image\image1\s31\1.bmp'); 
x32=imread('C:\ image\image1\s32\1.bmp'); 
x33=imread('C:\ image\image1\s33\1.bmp'); 
x34=imread('C:\ image\image1\s34\1.bmp'); 
x35=imread('C:\ image\image1\s35\1.bmp'); 
x36=imread('C:\ image\image1\s36\1.bmp'); 
x37=imread('C:\ image\image1\s37\1.bmp'); 
x38=imread('C: \image\image1\s38\1.bmp'); 
 
 
x1=double(x1); 
x2=double(x2); 
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x3=double(x3); 
x4=double(x4); 
x5=double(x5); 
x6=double(x6); 
x7=double(x7); 
x8=double(x8); 
x9=double(x9); 
x10=double(x10); 
x11=double(x11); 
x12=double(x12); 
x13=double(x13); 
x14=double(x14); 
x15=double(x15); 
x16=double(x16); 
x17=double(x17); 
x18=double(x18); 
x19=double(x19); 
x20=double(x20); 
x21=double(x21); 
x22=double(x22); 
x23=double(x23); 
x24=double(x24); 
x25=double(x25); 
x26=double(x26); 
x27=double(x27); 
x28=double(x28); 
x29=double(x29); 
x30=double(x30); 
x31=double(x31); 
x32=double(x32); 
x33=double(x33); 
x34=double(x34); 
x35=double(x35); 
x36=double(x36); 
x37=double(x37); 
x38=double(x38); 
 
 
I1=x1; 
I2=x2; 
I3=x3; 
I4=x4; 
I5=x5; 
I6=x6; 
I7=x7; 
I8=x8; 
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I9=x9; 
I10=x10; 
I11=x11; 
I12=x12; 
I13=x13; 
I14=x14; 
I15=x15; 
I16=x16; 
I17=x17; 
I18=x18; 
I19=x19; 
I20=x20; 
I21=x21; 
I22=x22; 
I23=x23; 
I24=x24; 
I25=x25; 
I26=x26; 
I27=x27; 
I28=x28; 
I29=x29; 
I30=x30; 
I31=x31; 
I32=x32; 
I33=x33; 
I34=x34; 
I35=x35; 
I36=x36; 
I37=x37; 
I38=x38; 
 
 
Xav=(x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12+x13+x14+x15+x16+x17+x1
8+x19+x20+x21+x22+x23+x24+x25+x26+x27+x28+x29+x30+x31+x32+x33+x34+
x35+x36+x37+x38)/38; 
x1=x1-Xav; 
x2=x2-Xav; 
x3=x3-Xav; 
x4=x4-Xav; 
x5=x5-Xav; 
x6=x6-Xav; 
x7=x7-Xav; 
x8=x8-Xav; 
x9=x9-Xav; 
x10=x10-Xav; 
x11=x11-Xav; 
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x12=x12-Xav; 
x13=x13-Xav; 
x14=x14-Xav; 
x15=x15-Xav; 
x16=x16-Xav; 
x17=x17-Xav; 
x18=x18-Xav; 
x19=x19-Xav; 
x20=x20-Xav; 
x21=x21-Xav; 
x22=x22-Xav; 
x23=x23-Xav; 
x24=x24-Xav; 
x25=x25-Xav; 
x26=x26-Xav; 
x27=x27-Xav; 
x28=x28-Xav; 
x29=x29-Xav; 
x30=x30-Xav; 
x31=x31-Xav; 
x32=x32-Xav; 
x33=x33-Xav; 
x34=x34-Xav; 
x35=x35-Xav; 
x36=x36-Xav; 
x37=x37-Xav; 
x38=x38-Xav; 
 
XT1=x1'*x1; 
XT2=x2'*x2; 
XT3=x3'*x3; 
XT4=x4'*x4; 
XT5=x5'*x5; 
XT6=x6'*x6; 
XT7=x7'*x7; 
XT8=x8'*x8; 
XT9=x9'*x9; 
XT10=x10'*x10; 
XT11=x11'*x11; 
XT12=x12'*x12; 
XT13=x13'*x13; 
XT14=x14'*x14; 
XT15=x15'*x15; 
XT16=x16'*x16; 
XT17=x17'*x17; 
XT18=x18'*x18; 
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XT19=x19'*x19; 
XT20=x20'*x20; 
XT21=x21'*x21; 
XT22=x22'*x22; 
XT23=x23'*x23; 
XT24=x24'*x24; 
XT25=x25'*x25; 
XT26=x26'*x26; 
XT27=x27'*x27; 
XT28=x28'*x28; 
XT29=x29'*x29; 
XT30=x30'*x30; 
XT31=x31'*x31; 
XT32=x32'*x32; 
XT33=x33'*x33; 
XT34=x34'*x34; 
XT35=x35'*x35; 
XT36=x36'*x36; 
XT37=x37'*x37; 
XT38=x38'*x38; 
 
 
XT=(XT1+XT2+XT3+XT4+XT5+XT6+XT7+XT8+XT9+XT10+XT11+XT12+XT1
3+XT14+XT15+XT16+XT17+XT18+XT19+XT20+XT21+XT22+XT23+XT24+XT
25+XT26+XT27+XT28+XT29+XT30+XT31+XT32+XT33+XT34+XT35+XT36+X
T37+XT38)/38; 
 
DXT=dct2(XT); 
figure 
imshow(log(abs(DXT)),[]), colormap(jet(64)), colorbar 
RXT=DXT(1:20,1:20); 
 
[V,D] = eig(RXT); 
 
T1=dct2(I1); 
T2=dct2(I2); 
T3=dct2(I3); 
T4=dct2(I4); 
T5=dct2(I5); 
T6=dct2(I6); 
T7=dct2(I7); 
T8=dct2(I8); 
T9=dct2(I9); 
T10=dct2(I10); 
T11=dct2(I11); 
T12=dct2(I12); 
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T13=dct2(I13); 
T14=dct2(I14); 
T15=dct2(I15); 
T16=dct2(I16); 
T17=dct2(I17); 
T18=dct2(I18); 
T19=dct2(I19); 
T20=dct2(I20); 
T21=dct2(I21); 
T22=dct2(I22); 
T23=dct2(I23); 
T24=dct2(I24); 
T25=dct2(I25); 
T26=dct2(I26); 
T27=dct2(I27); 
T28=dct2(I28); 
T29=dct2(I29); 
T30=dct2(I30); 
T31=dct2(I31); 
T32=dct2(I32); 
T33=dct2(I33); 
T34=dct2(I34); 
T35=dct2(I35); 
T36=dct2(I36); 
T37=dct2(I37); 
T38=dct2(I38); 
 
%figure 
%imshow(log(abs(T38)),[]), colormap(jet(64)), colorbar 
R1=T1(1:20,1:20); 
R2=T2(1:20,1:20); 
R3=T3(1:20,1:20); 
R4=T4(1:20,1:20); 
R5=T5(1:20,1:20); 
R6=T6(1:20,1:20); 
R7=T7(1:20,1:20); 
R8=T8(1:20,1:20); 
R9=T9(1:20,1:20); 
R10=T10(1:20,1:20); 
R11=T11(1:20,1:20); 
R12=T12(1:20,1:20); 
R13=T13(1:20,1:20); 
R14=T14(1:20,1:20); 
R15=T15(1:20,1:20); 
R16=T16(1:20,1:20); 
R17=T17(1:20,1:20); 

 116



R18=T18(1:20,1:20); 
R19=T19(1:20,1:20); 
R20=T20(1:20,1:20); 
R21=T21(1:20,1:20); 
R22=T22(1:20,1:20); 
R23=T23(1:20,1:20); 
R24=T24(1:20,1:20); 
R25=T25(1:20,1:20); 
R26=T26(1:20,1:20); 
R27=T27(1:20,1:20); 
R28=T28(1:20,1:20); 
R29=T29(1:20,1:20); 
R30=T30(1:20,1:20); 
R31=T31(1:20,1:20); 
R32=T32(1:20,1:20); 
R33=T33(1:20,1:20); 
R34=T34(1:20,1:20); 
R35=T35(1:20,1:20); 
R36=T36(1:20,1:20); 
R37=T37(1:20,1:20); 
R38=T38(1:20,1:20); 
 
 
 
V1=R1*V(:,1:5); 
V2=R2*V(:,1:5); 
V3=R3*V(:,1:5); 
V4=R4*V(:,1:5); 
V5=R5*V(:,1:5); 
V6=R6*V(:,1:5); 
V7=R7*V(:,1:5); 
V8=R8*V(:,1:5); 
V9=R9*V(:,1:5); 
V10=R10*V(:,1:5); 
V11=R11*V(:,1:5); 
V12=R12*V(:,1:5); 
V13=R13*V(:,1:5); 
V14=R14*V(:,1:5); 
V15=R15*V(:,1:5); 
V16=R16*V(:,1:5); 
V17=R17*V(:,1:5); 
V18=R18*V(:,1:5); 
V19=R19*V(:,1:5); 
V20=R20*V(:,1:5); 
V21=R21*V(:,1:5); 
V22=R22*V(:,1:5); 
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V23=R23*V(:,1:5); 
V24=R24*V(:,1:5); 
V25=R25*V(:,1:5); 
V26=R26*V(:,1:5); 
V27=R27*V(:,1:5); 
V28=R28*V(:,1:5); 
V29=R29*V(:,1:5); 
V30=R30*V(:,1:5); 
V31=R31*V(:,1:5); 
V32=R32*V(:,1:5); 
V33=R33*V(:,1:5); 
V34=R34*V(:,1:5); 
V35=R35*V(:,1:5); 
V36=R36*V(:,1:5); 
V37=R37*V(:,1:5); 
V38=R38*V(:,1:5); 
 
 
 
 
 
xt=imread('C:\manal\image\image1\s22\2.bmp'); 
 
 
figure; 
imshow(xt); 
xt=double(xt); 
IT=xt; 
TT=dct2(IT); 
RT=TT(1:20,1:20); 
VT=RT*V(:,1:5); 
 
 
D1=V1-VT; 
D2=V2-VT; 
D3=V3-VT; 
D4=V4-VT; 
D5=V5-VT; 
D6=V6-VT; 
D7=V7-VT; 
D8=V8-VT; 
D9=V9-VT; 
D10=V10-VT; 
D11=V11-VT; 
D12=V12-VT; 
D13=V13-VT; 

 118



D14=V14-VT; 
D15=V15-VT; 
D16=V16-VT; 
D17=V17-VT; 
D18=V18-VT; 
D19=V19-VT; 
D20=V20-VT; 
D21=V21-VT; 
D22=V22-VT; 
D23=V23-VT; 
D24=V24-VT; 
D25=V25-VT; 
D26=V26-VT; 
D27=V27-VT; 
D28=V28-VT; 
D29=V29-VT; 
D30=V30-VT; 
D31=V31-VT; 
D32=V32-VT; 
D33=V33-VT; 
D34=V34-VT; 
D35=V35-VT; 
D36=V36-VT; 
D37=V37-VT; 
D38=V38-VT; 
 
 
N11=norm(D1(:,1)) 
N12=norm(D1(:,2)) 
N13=norm(D1(:,3)) 
N14=norm(D1(:,4)) 
N15=norm(D1(:,5)) 
NT1=N11+N12+N13+N14+N15 
 
N21=norm(D2(:,1)) 
N22=norm(D2(:,2)) 
N23=norm(D2(:,3)) 
N24=norm(D2(:,4)) 
N25=norm(D2(:,5)) 
NT2=N21+N22+N23+N24+N25 
 
 
N31=norm(D3(:,1)) 
N32=norm(D3(:,2)) 
N33=norm(D3(:,3)) 
N34=norm(D3(:,4)) 
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N35=norm(D3(:,5)) 
NT3=N31+N32+N33+N34+N35 
 
N41=norm(D4(:,1)) 
N42=norm(D4(:,2)) 
N43=norm(D4(:,3)) 
N44=norm(D4(:,4)) 
N45=norm(D4(:,5)) 
NT4=N41+N42+N43+N44+N45 
 
N51=norm(D5(:,1)) 
N52=norm(D5(:,2)) 
N53=norm(D5(:,3)) 
N54=norm(D5(:,4)) 
N55=norm(D5(:,5)) 
NT5=N51+N52+N53+N54+N55 
 
N61=norm(D6(:,1)) 
N62=norm(D6(:,2)) 
N63=norm(D6(:,3)) 
N64=norm(D6(:,4)) 
N65=norm(D6(:,5)) 
NT6=N61+N62+N63+N64+N65 
 
N71=norm(D7(:,1)) 
N72=norm(D7(:,2)) 
N73=norm(D7(:,3)) 
N74=norm(D7(:,4)) 
N75=norm(D7(:,5)) 
NT7=N71+N72+N73+N74+N75 
 
N81=norm(D8(:,1)) 
N82=norm(D8(:,2)) 
N83=norm(D8(:,3)) 
N84=norm(D8(:,4)) 
N85=norm(D8(:,5)) 
NT8=N81+N82+N83+N84+N85 
 
N91=norm(D9(:,1)) 
N92=norm(D9(:,2)) 
N93=norm(D9(:,3)) 
N94=norm(D9(:,4)) 
N95=norm(D9(:,5)) 
NT9=N91+N92+N93+N94+N95 
 
N101=norm(D10(:,1)) 
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N102=norm(D10(:,2)) 
N103=norm(D10(:,3)) 
N104=norm(D10(:,4)) 
N105=norm(D10(:,5)) 
NT10=N101+N102+N103+N104+N105 
 
N111=norm(D11(:,1)) 
N112=norm(D11(:,2)) 
N113=norm(D11(:,3)) 
N114=norm(D11(:,4)) 
N115=norm(D11(:,5)) 
NT11=N111+N112+N113+N114+N115 
 
N121=norm(D12(:,1)) 
N122=norm(D12(:,2)) 
N123=norm(D12(:,3)) 
N124=norm(D12(:,4)) 
N125=norm(D12(:,5)) 
NT12=N121+N122+N123+N124+N125 
 
 
N131=norm(D13(:,1)) 
N132=norm(D13(:,2)) 
N133=norm(D13(:,3)) 
N134=norm(D13(:,4)) 
N135=norm(D13(:,5)) 
NT13=N131+N132+N133+N134+N135 
 
N141=norm(D14(:,1)) 
N142=norm(D14(:,2)) 
N143=norm(D14(:,3)) 
N144=norm(D14(:,4)) 
N145=norm(D14(:,5)) 
NT14=N141+N142+N143+N144+N145 
 
N151=norm(D15(:,1)) 
N152=norm(D15(:,2)) 
N153=norm(D15(:,3)) 
N154=norm(D15(:,4)) 
N155=norm(D15(:,5)) 
NT15=N151+N152+N153+N154+N155 
 
N161=norm(D16(:,1)) 
N162=norm(D16(:,2)) 
N163=norm(D16(:,3)) 
N164=norm(D16(:,4)) 
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N165=norm(D16(:,5)) 
NT16=N161+N161+N161+N161+N161 
 
N171=norm(D17(:,1)) 
N172=norm(D17(:,2)) 
N173=norm(D17(:,3)) 
N174=norm(D17(:,4)) 
N175=norm(D17(:,5)) 
NT17=N171+N172+N173+N174+N175 
 
N181=norm(D18(:,1)) 
N182=norm(D18(:,2)) 
N183=norm(D18(:,3)) 
N184=norm(D18(:,4)) 
N185=norm(D18(:,5)) 
NT18=N181+N182+N183+N184+N185 
 
N191=norm(D19(:,1)) 
N192=norm(D19(:,2)) 
N193=norm(D19(:,3)) 
N194=norm(D19(:,4)) 
N195=norm(D19(:,5)) 
NT19=N191+N192+N193+N194+N195 
 
N201=norm(D20(:,1)) 
N202=norm(D20(:,2)) 
N203=norm(D20(:,3)) 
N204=norm(D20(:,4)) 
N205=norm(D20(:,5)) 
NT20=N201+N202+N203+N204+N205 
 
N211=norm(D21(:,1)) 
N212=norm(D21(:,2)) 
N213=norm(D21(:,3)) 
N214=norm(D21(:,4)) 
N215=norm(D21(:,5)) 
NT21=N211+N212+N213+N214+N215 
 
N221=norm(D22(:,1)) 
N222=norm(D22(:,2)) 
N223=norm(D22(:,3)) 
N224=norm(D22(:,4)) 
N225=norm(D22(:,5)) 
NT22=N221+N222+N223+N224+N225 
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N231=norm(D23(:,1)) 
N232=norm(D23(:,2)) 
N233=norm(D23(:,3)) 
N234=norm(D23(:,4)) 
N235=norm(D23(:,5)) 
NT23=N231+N232+N233+N234+N235 
 
N241=norm(D24(:,1)) 
N242=norm(D24(:,2)) 
N243=norm(D24(:,3)) 
N244=norm(D24(:,4)) 
N245=norm(D24(:,5)) 
NT24=N241+N242+N243+N244+N245 
 
N251=norm(D25(:,1)) 
N252=norm(D25(:,2)) 
N253=norm(D25(:,3)) 
N254=norm(D25(:,4)) 
N255=norm(D25(:,5)) 
NT25=N251+N252+N253+N254+N255 
 
N261=norm(D26(:,1)) 
N262=norm(D26(:,2)) 
N263=norm(D26(:,3)) 
N264=norm(D26(:,4)) 
N265=norm(D26(:,5)) 
NT26=N261+N262+N263+N264+N265 
 
N271=norm(D27(:,1)) 
N272=norm(D27(:,2)) 
N273=norm(D27(:,3)) 
N274=norm(D27(:,4)) 
N275=norm(D27(:,5)) 
NT27=N271+N272+N273+N274+N275 
 
N281=norm(D28(:,1)) 
N282=norm(D28(:,2)) 
N283=norm(D28(:,3)) 
N284=norm(D28(:,4)) 
N285=norm(D28(:,5)) 
NT28=N281+N282+N283+N284+N285 
 
N291=norm(D29(:,1)) 
N292=norm(D29(:,2)) 
N293=norm(D29(:,3)) 
N294=norm(D29(:,4)) 
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N295=norm(D29(:,5)) 
NT29=N291+N292+N293+N294+N295 
 
N301=norm(D30(:,1)) 
N302=norm(D30(:,2)) 
N303=norm(D30(:,3)) 
N304=norm(D30(:,4)) 
N305=norm(D30(:,5)) 
NT30=N301+N302+N303+N304+N305 
 
N311=norm(D31(:,1)) 
N312=norm(D31(:,2)) 
N313=norm(D31(:,3)) 
N314=norm(D31(:,4)) 
N315=norm(D31(:,5)) 
NT31=N311+N312+N313+N314+N315 
 
N321=norm(D32(:,1)) 
N322=norm(D32(:,2)) 
N323=norm(D32(:,3)) 
N324=norm(D32(:,4)) 
N325=norm(D32(:,5)) 
NT32=N321+N322+N323+N324+N325 
 
 
N331=norm(D33(:,1)) 
N332=norm(D33(:,2)) 
N333=norm(D33(:,3)) 
N334=norm(D33(:,4)) 
N335=norm(D33(:,5)) 
NT33=N331+N332+N333+N334+N335 
 
N341=norm(D34(:,1)) 
N342=norm(D34(:,2)) 
N343=norm(D34(:,3)) 
N344=norm(D34(:,4)) 
N345=norm(D34(:,5)) 
NT34=N341+N342+N343+N344+N345 
 
N351=norm(D35(:,1)) 
N352=norm(D35(:,2)) 
N353=norm(D35(:,3)) 
N354=norm(D35(:,4)) 
N355=norm(D35(:,5)) 
NT35=N351+N352+N353+N354+N355 
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N361=norm(D36(:,1)) 
N362=norm(D36(:,2)) 
N363=norm(D36(:,3)) 
N364=norm(D36(:,4)) 
N365=norm(D36(:,5)) 
NT36=N361+N362+N363+N364+N365 
 
N371=norm(D37(:,1)) 
N372=norm(D37(:,2)) 
N373=norm(D37(:,3)) 
N374=norm(D37(:,4)) 
N375=norm(D37(:,5)) 
NT37=N371+N372+N373+N374+N375 
 
N381=norm(D38(:,1)) 
N382=norm(D38(:,2)) 
N383=norm(D38(:,3)) 
N384=norm(D38(:,4)) 
N385=norm(D38(:,5)) 
NT38=N381+N382+N383+N384+N385 
 
 
 
 
R=[NT1,NT2,NT3,NT4,NT5,NT6,NT7,NT8,NT9,NT10,NT11,NT12,NT13,NT14,N
T15,NT16,NT17,NT18,NT19,NT20,NT21,NT22,NT23,NT24,NT25,NT26,NT27,NT
28,NT29,NT30,NT31,NT32,NT33,NT34,NT35,NT36,NT37,NT38]; 
[S,H] = min(R) 
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