4 research outputs found

    Adaptive Non-myopic Quantizer Design for Target Tracking in Wireless Sensor Networks

    Full text link
    In this paper, we investigate the problem of nonmyopic (multi-step ahead) quantizer design for target tracking using a wireless sensor network. Adopting the alternative conditional posterior Cramer-Rao lower bound (A-CPCRLB) as the optimization metric, we theoretically show that this problem can be temporally decomposed over a certain time window. Based on sequential Monte-Carlo methods for tracking, i.e., particle filters, we design the local quantizer adaptively by solving a particlebased non-linear optimization problem which is well suited for the use of interior-point algorithm and easily embedded in the filtering process. Simulation results are provided to illustrate the effectiveness of our proposed approach.Comment: Submitted to 2013 Asilomar Conference on Signals, Systems, and Computer

    Resource Management for Distributed Estimation via Sparsity-Promoting Regularization

    Get PDF
    Recent advances in wireless communications and electronics have enabled the development of low-cost, low-power, multifunctional sensor nodes that are small in size and communicate untethered in a sensor network. These sensor nodes can sense, measure, and gather information from the environment and, based on some local processing, they transmit the sensed data to a fusion center that is responsible for making the global inference. Sensor networks are often tasked to perform parameter estimation; example applications include battlefield surveillance, medical monitoring, and navigation. However, under limited resources, such as limited communication bandwidth and sensor battery power, it is important to design an energy-efficient estimation architecture. The goal of this thesis is to provide a fundamental understanding and characterization of the optimal tradeoffs between estimation accuracy and resource usage in sensor networks. In the thesis, two basic issues of resource management are studied, sensor selection/scheduling and sensor collaboration for distributed estimation, where the former refers to finding the best subset of sensors to activate for data acquisition in order to minimize the estimation error subject to a constraint on the number of activations, and the latter refers to seeking the optimal inter-sensor communication topology and energy allocation scheme for distributed estimation systems. Most research on resource management so far has been based on several key assumptions, a) independence of observation, b) strict resource constraints, and c) absence of inter-sensor communication, which lend analytical tractability to the problem but are often found lacking in practice. This thesis introduces novel techniques to relax these assumptions and provide new insights into addressing resource management problems. The thesis analyzes how noise correlation affects solutions of sensor selection problems, and proposes both a convex relaxation approach and a greedy algorithm to find these solutions. Compared to the existing sensor selection approaches that are limited to the case of uncorrelated noise or weakly correlated noise, the methodology proposed in this thesis is valid for any arbitrary noise correlation regime. Moreover, this thesis shows a correspondence between active sensors and the nonzero columns of an estimator gain matrix. Based on this association, a sparsity-promoting optimization framework is established, where the desire to reduce the number of selected sensors is characterized by a sparsity-promoting penalty term in the objective function. Instead of placing a hard constraint on sensor activations, the promotion of sparsity leads to trade-offs between estimation performance and the number of selected sensors. To account for the individual power constraint of each sensor, a novel sparsity-promoting penalty function is presented to avoid scenarios in which the same sensors are successively selected. For solving the proposed optimization problem, we employ the alternating direction method of multipliers (ADMM), which allows the optimization problem to be decomposed into subproblems that can be solved analytically to obtain exact solutions. The problem of sensor collaboration arises when inter-sensor communication is incorporated in sensor networks, where sensors are allowed to update their measurements by taking a linear combination of the measurements of those they interact with prior to transmission to a fusion center. In this thesis, a sparsity-aware optimization framework is presented for the joint design of optimal sensor collaboration and selection schemes, where the cost of sensor collaboration is associated with the number of nonzero entries of a collaboration matrix, and the cost of sensor selection is characterized by the number of nonzero rows of the collaboration matrix. It is shown that a) the presence of sensor collaboration smooths out the observation noise, thereby improving the quality of the signal and eventual estimation performance, and b) there exists a trade-off between sensor selection and sensor collaboration. This thesis further addresses the problem of sensor collaboration for the estimation of time-varying parameters in dynamic networks that involve, for example, time-varying observation gains and channel gains. Impact of parameter correlation and temporal dynamics of sensor networks on estimation performance is illustrated from both theoretical and practical points of view. Last but not least, optimal energy allocation and storage control polices are designed in sensor networks with energy-harvesting nodes. We show that the resulting optimization problem can be solved as a special nonconvex problem, where the only source of nonconvexity can be isolated to a constraint that contains the difference of convex functions. This specific problem structure enables the use of a convex-concave procedure to obtain a near-optimal solution

    SENSOR MANAGEMENT FOR LOCALIZATION AND TRACKING IN WIRELESS SENSOR NETWORKS

    Get PDF
    Wireless sensor networks (WSNs) are very useful in many application areas including battlefield surveillance, environment monitoring and target tracking, industrial processes and health monitoring and control. The classical WSNs are composed of large number of densely deployed sensors, where sensors are battery-powered devices with limited signal processing capabilities. In the crowdsourcing based WSNs, users who carry devices with built-in sensors are recruited as sensors. In both WSNs, the sensors send their observations regarding the target to a central node called the fusion center for final inference. With limited resources, such as limited communication bandwidth among the WSNs and limited sensor battery power, it is important to investigate algorithms which consider the trade-off between system performance and energy cost in the WSNs. The goal of this thesis is to study the sensor management problems in resource limited WSNs while performing target localization or tracking tasks. Most research on sensor management problems in classical WSNs assumes that the number of sensors to be selected is given a priori, which is often not true in practice. Moreover, sensor network design usually involves consideration of multiple conflicting objectives, such as maximization of the lifetime of the network or the inference performance, while minimizing the cost of resources such as energy, communication or deployment costs. Thus, in this thesis, we formulate the sensor management problem in a classical resource limited WSN as a multi-objective optimization problem (MOP), whose goal is to find a set of sensor selection strategies which re- veal the trade-off between the target tracking performance and the number of selected sensors to perform the task. In this part of the thesis, we propose a novel mutual information upper bound (MIUB) based sensor selection scheme, which has low computational complexity, same as the Fisher information (FI) based sensor selection scheme, and gives estimation performance similar to the mutual information (MI) based sensor selection scheme. Without knowing the number of sensors to be selected a priori, the MOP gives a set of sensor selection strategies that reveal different trade-offs between two conflicting objectives: minimization of the number of selected sensors and minimization of the gap between the performance metric (MIUB and FI) when all the sensors transmit measurements and when only the selected sensors transmit their measurements based on the sensor selection strategy. Crowdsourcing has been applied to sensing applications recently where users carrying devices with built-in sensors are allowed or even encouraged to contribute toward the inference tasks. Crowdsourcing based WSNs provide cost effectiveness since a dedicated sensing infrastructure is no longer needed for different inference tasks, also, such architectures allow ubiquitous coverage. Most sensing applications and systems assume voluntary participation of users. However, users consume their resources while participating in a sensing task, and they may also have concerns regarding their privacy. At the same time, the limitation on communication bandwidth requires proper management of the participating users. Thus, there is a need to design optimal mechanisms which perform selection of the sensors in an efficient manner as well as providing appropriate incentives to the users to motivate their participation. In this thesis, optimal mechanisms are designed for sensor management problems in crowdsourcing based WSNs where the fusion center (FC) con- ducts auctions by soliciting bids from the selfish sensors, which reflect how much they value their energy cost. Furthermore, the rationality and truthfulness of the sensors are guaranteed in our model. Moreover, different considerations are included in the mechanism design approaches: 1) the sensors send analog bids to the FC, 2) the sensors are only allowed to send quantized bids to the FC because of communication limitations or some privacy issues, 3) the state of charge (SOC) of the sensors affects the energy consumption of the sensors in the mechanism, and, 4) the FC and the sensors communicate in a two-sided market
    corecore