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ABSTRACT

Recent advances in wireless communications and electronics have enabled the development of

low-cost, low-power, multifunctional sensor nodes that are small in size and communicate unteth-

ered in a sensor network. These sensor nodes can sense, measure, and gather information from the

environment and, based on some local processing, they transmit the sensed data to a fusion center

that is responsible for making the global inference. Sensor networks are often tasked to perform

parameter estimation; example applications include battlefield surveillance, medical monitoring,

and navigation. However, under limited resources, such as limited communication bandwidth and

sensor battery power, it is important to design an energy-efficient estimation architecture. The

goal of this thesis is to provide a fundamental understanding and characterization of the optimal

tradeoffs between estimation accuracy and resource usage in sensor networks.

In the thesis, two basic issues of resource management are studied, sensor selection/scheduling

and sensor collaboration for distributed estimation, where the former refers to finding the best sub-

set of sensors to activate for data acquisition in order to minimize the estimation error subject to

a constraint on the number of activations, and the latter refers to seeking the optimal inter-sensor

communication topology and energy allocation scheme for distributed estimation systems. Most

research on resource management so far has been based on several key assumptions, a) indepen-

dence of observation, b) strict resource constraints, and c) absence of inter-sensor communication,

which lend analytical tractability to the problem but are often found lacking in practice. This thesis

introduces novel techniques to relax these assumptions and provide new insights into addressing

resource management problems.

The thesis analyzes how noise correlation affects solutions of sensor selection problems, and

proposes both a convex relaxation approach and a greedy algorithm to find these solutions. Com-

pared to the existing sensor selection approaches that are limited to the case of uncorrelated noise

or weakly correlated noise, the methodology proposed in this thesis is valid for any arbitrary noise



correlation regime. Moreover, this thesis shows a correspondence between active sensors and the

nonzero columns of an estimator gain matrix. Based on this association, a sparsity-promoting op-

timization framework is established, where the desire to reduce the number of selected sensors is

characterized by a sparsity-promoting penalty term in the objective function. Instead of placing

a hard constraint on sensor activations, the promotion of sparsity leads to trade-offs between es-

timation performance and the number of selected sensors. To account for the individual power

constraint of each sensor, a novel sparsity-promoting penalty function is presented to avoid sce-

narios in which the same sensors are successively selected. For solving the proposed optimization

problem, we employ the alternating direction method of multipliers (ADMM), which allows the

optimization problem to be decomposed into subproblems that can be solved analytically to obtain

exact solutions.

The problem of sensor collaboration arises when inter-sensor communication is incorporated in

sensor networks, where sensors are allowed to update their measurements by taking a linear com-

bination of the measurements of those they interact with prior to transmission to a fusion center.

In this thesis, a sparsity-aware optimization framework is presented for the joint design of optimal

sensor collaboration and selection schemes, where the cost of sensor collaboration is associated

with the number of nonzero entries of a collaboration matrix, and the cost of sensor selection is

characterized by the number of nonzero rows of the collaboration matrix. It is shown that a) the

presence of sensor collaboration smooths out the observation noise, thereby improving the quality

of the signal and eventual estimation performance, and b) there exists a trade-off between sensor

selection and sensor collaboration. This thesis further addresses the problem of sensor collabora-

tion for the estimation of time-varying parameters in dynamic networks that involve, for example,

time-varying observation gains and channel gains. Impact of parameter correlation and tempo-

ral dynamics of sensor networks on estimation performance is illustrated from both theoretical

and practical points of view. Last but not least, optimal energy allocation and storage control po-

lices are designed in sensor networks with energy-harvesting nodes. We show that the resulting

optimization problem can be solved as a special nonconvex problem, where the only source of



nonconvexity can be isolated to a constraint that contains the difference of convex functions. This

specific problem structure enables the use of a convex-concave procedure to obtain a near-optimal

solution.
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1

CHAPTER 1

INTRODUCTION

Over the last decade, advances in micro-electro-mechanical systems and in low-power sensor

devices have created technical capabilities to realize multi-functional wireless sensor networks

(WSNs). WSNs have been widely used for environmental monitoring (e.g., temperature, pollution,

precipitation sensing) [1], medical monitoring (e.g., monitoring patients both in the clinical setting

and at home, body health monitoring using wearable sensors) [2], power networks (e.g., power

system state estimation, electricity market forcasting) [3], localization and surveillance (e.g., tar-

get tracking, indoor navigation) [4], and so on. In many applications, the task of sensor networks

is to estimate an unknown parameter/state of interest, such as field intensity and target location.

This thesis focuses on distributed estimation using WSNs.

With pervasive sensors continuously collecting and storing massive amounts of information,

there is no doubt this is an era of data deluge. However, running analytics on all the gathered data

by central processors is infeasible, since the computing resource, capacity of storage units, com-

munication bandwidth, and sensor battery power are limited in networks. Under limited resources,

it is of paramount importance to accquire only the most informative data and design an energy-

efficient architecture for estimation tasks. Therefore, the problem of resource management (e.g.,

sensor selection/scheduling, and energy allocation) arises in order to reach a desirable estimation

accuracy in an energy-efficient manner. However, finding the optimal resource management strat-
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egy is difficult for most scenarios. The problem becomes more involved when sensing is corrupted

by correlated measurement noise, or when inter-sensor communication is established in sensor

networks to improve estimation performance as well as conserve resources.

In this thesis, we consider two types of resource management problems in sensor networks: a)

sensor selection/scheduling, and b) energy allocation for collaborative estimation. The resource

management problems are addressed in the context of distributed estimation, where sensors per-

form some resource-conscious local processing before transmission to the fusion center (FC). The

ultimate goal of our research is the integrated design of local signal processing operations and

strategies to achieve an optimal trade-off between resource consumption and estimation accuracy.

1.1 Sensor selection and scheduling

Due to limited network resources, such as limited communication bandwidth and sensor battery

power, it may not be desirable to have all the sensors report their measurements at all time instants.

Therefore, the problem of sensor selection/scheduling has attracted attention to strike a balance

between estimation accuracy and sensor activations over space and/or time. The importance of

sensor selection/scheduling has been discussed extensively in the context of various applications,

such as target tracking [5], bit allocation [6], field monitoring [7], optimal control [8], power

allocation [9], optimal experiment design [10], and leader selection in consensus networks [11].

Many research efforts have focused on the problem of sensor selection (also known as myopic

sensor scheduling) [12–16], where at every instant the search is for the best sensors to be acti-

vated at the next time step (as opposed to a longer time horizon). The myopic selection policy has

some benefits. One benefit is that the problem of sensor scheduling for a single time step is easily

formulated under certain performance criteria, such as mutual information [12], entropy [13], and

estimation error [14, 15]. Another benefit is that many myopic scheduling methods are computa-

tionally efficient; examples of approaches include tree search [14], and convex relaxation [15, 16].

The problem of non-myopic scheduling, where sensor schedules are determined for multiple
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future time steps, has received a fair amount of interest in recent years [17–20]. In [17], two branch-

and-bound-based pruning algorithms via a tree structure were proposed to solve the non-myopic

sensor scheduling problem. The authors in [18] presented a multi-step sensor selection strategy by

using convex relaxations via a reformulation of the Kalman filter, which is able to address different

performance metrics and constraints on available resources. In [19], the problem of non-myopic

sensor scheduling is transformed into the maximization of a generalized information gain. In [20],

an approximate dynamic programming based non-myopic sensor selection method is proposed

where dynamic programming is performed efficiently for short time horizons.

However, if the length of the time horizon becomes large or infinite then finding an optimal

non-myopic schedule would be difficult, since the number of sensor sequences grows intractably

large as the time horizon grows. Therefore, some researchers have considered the problem of

periodic sensor schedules on an infinite time horizon [21,22]. In [8,23], periodicity of the optimal

sensor schedule was observed even for finite time horizon problems in which a periodic schedule

was not assumed a priori. Furthermore, in [24] it was shown that the optimal sensor schedule

for an infinite horizon problem can be approximated arbitrarily well by a periodic schedule with

a finite period. Although periodicity makes infinite horizon sensor scheduling problems tractable,

via the design of optimal sensor schedule over a finite time period, it brings in other challenges

such as periodicity constraint in problem formulation and optimization compared to conventional

sensor scheduling problems.

1.2 Sensor collaboration

In the context of distributed estimation, sensor collaboration refers to the act of sharing measure-

ments with neighboring sensors prior to transmission to the FC; see an illustrative example in

Fig. 1.1. Here sensors are allowed to update their measurements by taking a linear combination of

the measurements of those they interact with.

In the absence of collaboration, the estimation architecture reduces to a classical distributed es-
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FC

Phenomenon

sensor

sensor

sensor

Fig. 1.1: Example of collaborative estimation system.

timation network, where scaled versions of sensor measurements are transmitted using an amplify-

and-forward strategy [25]. In this setting, one of the key problems is to design the optimal power

amplifying factors to reach certain design criteria for performance measures, such as estimation

distortion and energy cost. Several variations of the conventional distributed estimation problem

have been addressed in the literature depending on the quantity to be estimated (random parame-

ter or process) [26, 27], the type of communication (analog-based or quantization-based) [28, 29],

nature of transmission channels (coherent or orthogonal) [30,31] and energy constraints [32]. The

problem of sensor collaboration was first proposed in [33] by assuming an orthogonal multiple

access channel (MAC) setting with a fully connected network, where all the sensors are allowed

to collaborate. The presence of sensor collaboration smooths out the observation noise, thereby

improving the quality of the signal and the eventual estimation performance.
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1.3 Summary of contributions and outline of thesis

This thesis is organized into four parts. In the first part of the thesis (i.e., Chapter 2), the dis-

tributed signal processing framework is formally introduced. Also, we review important references

that are closely related to our work, and review some important concepts in estimation and con-

vex/nonconvex optimization theory. In the second part of the thesis (i.e., Chapters 3–5), theory

and algorithms for optimal sensor selection/scheduling are discussed in depth. More specifically,

we derive the solution to a) the problem of sensor selection with correlated measurement noise,

b) the problem of optimal periodic sensor scheduling, and c) the problem of sensor scheduling

from an energy balance point of view. In the third part of the thesis (i.e., Chapters 6–8), design of

optimal sensor collaboration strategy with nonzero collaboration cost and unknown collaboration

topologies is studied. More specifically, we derive the solution to a) the problem of sensor collab-

oration for estimation of static parameters, b) the problem of sensor collaboration for estimation

of dynamic parameters, and c) the problem of sensor collaboration in networks with energy har-

vesting nodes. Finally, the thesis concludes with the fourth part (i.e., Chapter 9), where we pose

some interesting problems for future research. The content of Chapters 3–8 has been published as

papers, which include some additive subtopics that are not included in this thesis. The relationship

between these chapters and the publications is shown in the next section.

Chapter 2 presents preliminaries required for the later chapters of the thesis, which include the

system model, theory and algorithms for estimation and optimization. In particular, the alternating

direction method of multipliers (ADMM) is elaborated on, which is well-suited for optimization

problems that involve sparsity-inducing regularizers. Moreover, we present an extensive literature

review of resource management problems that are closely related to our work.

Chapter 3 focuses on the problem of sensor selection with correlated measurement noise. In

this chapter, we seek optimal sensor activations by formulating an optimization problem, in which

the estimation error, given by the trace of the inverse of the Bayesian Fisher information matrix,

is minimized subject to energy constraints. Fisher information has been widely used as an effec-

tive sensor selection criterion. However, existing information-based sensor selection methods are
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limited to the case of uncorrelated noise or weakly correlated noise due to the use of approximate

metrics. By contrast, here we derive the closed form of the Fisher information matrix with respect

to sensor selection variables that is valid for any arbitrary noise correlation regime, and develop

both a convex relaxation approach and a greedy algorithm to find near-optimal solutions. Further-

more, we generalize our framework of sensor selection to solve the problem of non-myopic sensor

scheduling.

Chapter 4 focuses on the problem of optimal time-periodic sensor schedules for estimating the

state of discrete-time dynamical systems. Here multiple sensors are deployed in a region of interest

and sensors are subject to resource constraints, which limit the number of times each can be acti-

vated over one period of the periodic schedule. We seek an algorithm that strikes a balance between

estimation accuracy and total sensor activations over one period. We make a correspondence be-

tween active sensors and the nonzero columns of the estimator gain. We formulate an optimization

problem in which we minimize the trace of the error covariance with respect to the estimator gain

while simultaneously penalizing the number of nonzero columns of the estimator gain. For solving

the resulting optimization problem, we employ ADMM, which allows the problem to be decom-

posed into subproblems that can either be solved efficiently using iterative numerical methods or

solved analytically to obtain exact solutions.

Chapter 5 presents a novel sparsity-promoting sensor scheduling framework, which has the

advantage of discouraging the excessive use of the same sensors in the network. In the sparsity-

promoting framework of sensor selection/scheduling, a sensor being off at a certain time instant is

represented by the corresponding column of the estimator coefficient matrix being identically equal

to zero. However, the existing sparsity-promoting techniques lead to scenarios in which the most

informative sensors are successively selected. Successive selections would result in faster energy

depletion of these sensors, which may render the network nonfunctional. In order to achieve a

balance between activating the most informative sensors and uniformly allocating sensor energy,

we propose a novel sparsity-promoting approach by adding a penalty function that avoids scenarios

where the same sensors are successively selected.
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Chapter 6 focuses on the problem of sensor collaboration while incorporating the cost of sensor

collaboration and selection. To determine the optimal sensor collaboration and selection schemes,

we associate (a) the cost of sensor collaboration with the number of nonzero entries of the col-

laboration matrix (i.e., its overall sparsity), and (b) the cost of sensor selection with the number

of nonzero rows of the collaboration matrix (i.e., its row-sparsity). Based on these associations,

we present a sparsity-inducing optimization framework that jointly designs the optimal sensor

selection and collaboration schemes. It is shown that there exists a trade-off between sensor col-

laboration and sensor selection for a given estimation performance.

Chapter 7 studies the problem of sensor collaboration for estimation of time-varying param-

eters in dynamic sensor networks. Based on prior knowledge about parameter correlation, the

resulting sensor collaboration problem is solved for the estimation of temporally uncorrelated and

correlated parameters. In the case of temporally uncorrelated parameters, we show that the sensor

collaboration problem can be cast as a special nonconvex optimization problem, where a difference

of convex functions carries all the nonconvexity. By exploiting problem structure, we solve the

problem by using a convex-concave procedure, which renders a near optimal solution evidenced

by numerical results. In the case of correlated parameters, we show that the sensor collaboration

problem can be converted into a semidefinite program together with a nonconvex rank-one con-

straint. Spurred by the problem structure, we employ a semidefinite programming based penalty

convex-concave procedure to solve the sensor collaboration problem. In order to improve com-

putational efficiency, we further propose a fast algorithm that scales gracefully with problem size

via ADMM. We empirically show the impact of parameter correlation and temporal dynamics of

sensor networks on the performance of distributed estimation with sensor collaboration.

Chapter 8 extends the theory developed in Chapters 6–7 to the collaboration problem with en-

ergy harvesting sensors. Here we propose optimal energy allocation and storage control polices at

each time step by minimizing the estimation distortion subject to energy harvesting constraints.

Chapter 9 contains the conclusion and outlines a number of directions for future research.
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CHAPTER 2

BACKGROUND: RESOURCE

MANAGEMENT, ESTIMATION AND

OPTIMIZATION

2.1 Introduction

Estimation in resource constrained sensor networks usually involves some local processing fol-

lowing certain resource-conscious management protocols. The goal of resource management is to

determine the optimal resource allocation scheme, such as optimal sensor activation, sensor sched-

ule, and energy allocation for local sensors. In this chapter, we begin by elaborating on differences

between this thesis and the existing literature on sensor selection/scheduling and energy alloca-

tion. We then demonstrate the signal processing framework employed and review some relevant

concepts and algorithms in estimation theory and convex/nonconvex optimization theory.
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2.2 Literature review

Sensor selection with correlated noise

The problem of sensor selection with correlated noise was considered in several works [18, 19,34,

35]. It was shown that the presence of correlated noise makes optimal sensor selection/scheduling

problems more challenging, since Fisher information is a complicated non-linear function of the

selection variables. This is in contrast to the scenario of sensor selection with uncorrelated noise,

where each measurement contributes to Fisher information (equivalently, inverse of the Cramér-

Rao bound on the error covariance matrix) in an additive manner [36]. In [34, 35], the problem

of sensor selection with correlated noise was formulated so as to minimize the estimation error

subject to an energy constraint and to minimize the energy consumption subject to an estimation

constraint, respectively. In [19], a generalized information gain given by the trace of the Fisher

information matrix was maximized while seeking optimal sensor schedules with correlated noise.

In [18], a reformulation of the multi-step Kalman filter was introduced to schedule sensors for

linear dynamical systems with correlated noise.

However, the sensor selection schemes of [19, 34, 35] considered an approximate formulation

where the noise covariance matrix is assumed to be independent of the sensor selection variables.

In contrast, in Chapter 3, we derive the closed form expression of the estimation error with respect

to sensor selection variables under correlated measurement noise, which is valid for any arbitrary

noise correlation matrix. This expression is optimized via a convex relaxation method to determine

the optimal sensor selection scheme. We propose a greedy algorithm to solve the corresponding

sensor selection problem, where we show that when an inactive sensor is made active, the increase

in Fisher information yields an information gain in terms of a rank-one matrix. We also extend

the proposed sensor selection approach to address the problem of non-myopic sensor scheduling,

where the length of time horizon and energy constraints on individual sensors are taken into ac-

count. To the best of our knowledge, the sensor selection problem with correlated noise is solved

for the first time in the thesis.
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Periodic sensor scheduling

The design of optimal periodic sensor schedules has been recently studied in [21, 22, 37]. In [21],

the authors construct the optimal periodic schedule only for two sensors. For a multiple sensor

scenario, the work of [22] studied the problem of periodic sensor scheduling by assuming the

process noise to be very small, which results in a linear matrix inequality (LMI) problem. As a

consequence of the assumption that the process noise is negligible, the ordering of the measure-

ments does not factor into the solution of this LMI problem. Clearly, a sensor schedule in which

the order of sensor activations is irrelevant can not be optimal for sensor scheduling problems. For

example, it was shown in [38] that temporally staggered sensor schedules constitute the optimal

sensing policy. In [37], a lower bound on the performance of scheduling sensors over an infinite

time horizon is obtained, and then an open-loop periodic switching policy is constructed by using

a doubly substochastic matrix. The authors show that the presented switching policy achieves the

best estimation performance as the period length goes to zero (and thus sensors are switched as

fast as possible). In this thesis, we present a comparison of both the performance and the computa-

tional complexity of our methodology with other prominent work in the literature. We demonstrate

that our method performs as well or significantly better than these works, and is computationally

efficient for sensor scheduling in problems with large-scale dynamical systems.

The sensor scheduling framework presented in Chapter 4 relies on making a one-to-one corre-

spondence between every sensor and a column of the estimator gain. Namely, a sensor being off at

a certain time instant is equivalent to the corresponding column of the estimator gain being identi-

cally zero. This idea has been exploited in [39] on sparsity-promoting extended Kalman filtering,

where sensors are scheduled only for the next time step and have no resource constraints involved.

Different from [39], we consider a periodic sensor scheduling problem on an infinite time horizon,

where measurement frequency constraints and periodicity place further restrictions on the number

of nonzero columns of the time-periodic Kalman filter gain matrices.
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Energy-aware sparse sensor management

A sparsity-promoting technique has been used for sensor selection in [16, 39, 40], where the con-

straint on the number of selected sensors is characterized by a sparsity-promoting penalty term

in the objective function. This provides a tractable optimization framework to obtain the trade-

off between the estimation performance and the number of selected sensors. Also, this sparsity-

promoting framework facilitates the optimization procedure, where several efficient approaches

can be employed, e.g., the alternating direction method of multipliers (ADMM) in [39,40] and the

projected subgradient method in [16].

The current sparsity-promoting techniques may lead to scenarios in which the most ‘informa-

tive sensors’ are successively selected because of certain performance criterion, e.g., larger mutual

information with the target [41] or stronger correlation with the field point of interest [42]. This

behavior would result in faster energy depletion of the most informative sensors. From the per-

spective of network lifetime [43], the death of the first sensor (or a percentage of sensors) can

make the network nonfunctional. Therefore, it is desired to have a balanced use of sensors while

discouraging the excessive use of any group of sensors in the network.

In Chapter 5, we propose a new sparsity-promoting penalty function, which penalizes suc-

cessive selection of the same sensors. This framework generates sparse sensor schedules which

achieve a trade-off between activating the most informative sensors and balancing the energy con-

sumption in the network.

Sensor collaboration for linear coherent estimation

The problem of sensor collaboration over a coherent MAC was studied in [44, 45], where it was

observed that even a partially connected network can yield performance close to that of a fully

connected network, and the problem of sensor collaboration for a family of sparsely connected

networks was investigated. Further, the problem of sensor collaboration for estimating a vector

of random parameters is studied in [46]. The works [9, 33, 44–47] assumed that there is no cost

associated with collaboration, the collaboration topologies are fixed and given in advance, and
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the only unknowns are the collaboration weights used to combine sensor observations. A more

relevant reference to the present work is [48], where the nonzero collaboration cost was taken

into account for linear coherent estimation, and a greedy algorithm was developed for seeking the

optimal collaboration topology in energy constrained sensor networks.

In Chapter 6, we present a non-convex optimization framework to solve the collaboration prob-

lem with nonzero collaboration cost. To elaborate, we describe collaboration through a collabo-

ration matrix, in which the nonzero entries characterize the collaboration topology and the values

of these entries characterize the collaboration weights. We introduce a formulation that simul-

taneously optimizes both the collaboration topology and the collaboration weights. In contrast,

the optimization in [48] was performed in a sequential manner, where a sub-optimal collabora-

tion topology was first obtained, and then the optimal collaboration weights were sought. The

new formulation leads to a more efficient allocation of energy resources as evidenced by improved

distortion performance in numerical results.

In the existing literature [9, 33, 44–48], sensor collaboration was studied in static networks,

where sensors take a single snapshot of the static parameter, and then initiate sensor collaboration

protocols designed for single-snapshot estimation. Moreover, the parameters to be estimated, such

as daily temperature and precipitation in environmental monitoring [49, 50], are often temporally

correlated. Therefore, development of sensor collaboration schemes for the estimation of tempo-

rally correlated parameters in dynamic sensor networks is an attractive and important problem.

In Chapter 7, we find the optimal sensor collaboration scheme at each time step by minimiz-

ing the estimation distortion over a finite time horizon subject to individual energy constraints of

sensors. Due to the presence of (a) temporal dynamics in the system, (b) temporal correlation of

parameters, and (c) energy constraints in time, the design of optimal sensor collaboration schemes

at multiple time steps is coupled with each other, and thus poses many challenges in problem

formulation and optimization compared to the previous work. For example, when parameters of

interest are temporally correlated, expressing the estimation distortion in a succinct closed form

(with respect to collaboration variables) becomes intractable. It should be pointed out that even for
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uncorrelated parameters, finding the optimal collaboration scheme for each time step is nontrivial

since energy constraints are temporally inseparable.

Collaborative estimation with energy harvesting sensors

Several research efforts have been devoted to the design of optimal energy allocation schemes in

energy harvesting networks for distributed estimation without inter-sensor collaboration [51–54].

In [51], a single sensor equipped with an energy harvester was used for parameter estimation,

where the optimal energy allocation strategy was designed based on both causal and non-causal

side information of energy harvesting. In [52], the design of energy allocation was studied over

an orthogonal multiple access channel (MAC), where the estimation distortion resulting from the

best linear unbiased estimator was minimized subject to energy harvesting constraints. In [53],

a stochastic control problem was formulated for power allocation over a finite or an infinite time

horizon.

In Chapter 8, we present a unified optimization framework for the joint design of optimal en-

ergy allocation and storage control polices while incorporating the cost of sensor collaboration over

a finite time horizon. We show that the resulting optimization problem is nonconvex. However, by

identifying the special types of nonconvexities, the methods of convex relaxation and restriction

can be effectively used to find locally optimal solutions. Extensive numerical results are provided

to demonstrate the utility of our approach for energy allocation and storage control in collaborative

estimation.

2.3 Preliminaries: signal processing framework

The task of many sensor networks is to estimate an unknown parameter, such as a target location

or field intensity. In the system, sensors first accquire raw measurements about the parameter via a

given sensing model. The raw measurements are then locally processed based on certain resource

management protocols prior to transmission to the fusion center (FC). The FC determines the
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global estimate of the parameter by using a certain estimator. The general distributed estimation

architecture consists of several blocks as depicted in Fig. 2.1.

parameter

observation management
protocol

management
protocol

management
protocol

FC

sensor

sensor

sensor

estimate

sensing model sensor activation
or energy allocation

transmission estimation

observation

observation

Fig. 2.1: System diagram.

Depending on the particular application, several models of signal, sensing and transmission are

assumed in the thesis. The estimation application can either be single-snapshot or over a finite time

horizon as well as static or dynamic. We specify each system block as follows.

Signal model

The signal of interest may either be an unknown deterministic parameter or a random parameter

with certain prior knowledge about its statistics or distribution. In Chapter 3, the signal is assumed

to be a random Gaussian variable. In Chapter 4, the signal is modeled as the state of a linear

dynamical system. In Chapter 5, the signal is characterized as a spatially correlated field intensity.

In Chapters 6–8, the signal is an arbitrary random parameter/process with prior knowledge about

its second-order statistics.
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Sensing model

A linear sensing model is used in the thesis. In Chapters 3–5, the observation gain is assumed to

be constant. In Chapters 6–8, temporal dynamics of the observation gain are incorporated in the

system model. We also remark that non-linear and quantization-based sensing models have been

considered in our work [42, 55–57].

Management protocol

The thesis focuses on two types of resource management problems: a) sensor selection/scheduling

in Chapters 3–5, and b) sensor collaboration in Chapters 6–8. The former aims to strike a balance

between estimation accuracy and energy usage. And the latter is to find the optimal inter-sensor

communication scheme subject to a certain information or energy constraint. In this thesis, design

of the optimal resource management scheme is completed offline. An online resource management

approach for target tracking has been reported in [55–57], which are not included in this thesis.

Transmission model

The digital/analog information is transmitted to the FC over a noise-corrupted communication

channel. In Chapters 6–8, we consider a coherent multiple access channel (MAC), where sensors

coherently form a beam into a common channel received at the FC.

Estimation

The FC chooses to implement a particular fusion rule, namely, estimator in the thesis. To estimate

a random parameter, we adopt the linear minimum mean-squared error estimator (LMMSE) under

the Bayesian setup. The resulting mean squared error (MSE) is then employed to evaluate the

estimation performance of resource management. Given a linear Gaussian observation model, the

LMMSE is the optimal estimator in the sense of minimum MSE. In Chapter 4, we use a Kalman

filter to track the state of a random process.
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2.4 Preliminaries: Bayesian estimation and Fisher infor-

mation

Given the prior and the sensor measurements, the goal of the Bayesian approach is to estimate

a particular realization of a random variable θ. The optimal Bayesian estimator that minimizes

the MSE is given by the mean of the posterior PDF. However, the optimal Bayesian estimator is

often difficult to determine in a closed form, which involves multidimensional integration. In this

thesis, we foucs on the linear Baysian estimatior that minimizes the MSE, which is referred to as

LMMSE.

If the sensor measurements are described by the linear sensing model

y = Hθ + v, (2.1)

where y is a measurement vector, H is a known observation matrix, θ is the parameter to be

estiamted with mean E(θ) and covariance matrix Cθθ, and v is a random vector with zero mean

and covariance matrix Cv and is uncorrelated with θ, then the LMMSE of θ is [58]

θ̂ = E(θ) + CθθH
T (HCθθH

T + Cv)
−1(y −HE(θ)). (2.2)

The performance of the estimator is measured by the error ε = θ − θ̂ whose mean is zero and

whose covariance matrix is

P = Ey,θ(εε
T ) = (C−1

θθ + HTC−1
v H)−1. (2.3)

Suppose the parameter θ has a Gaussian prior and the sensing model (2.1) contains Gausian

noise, the LMMSE given by (2.2) is optimal in the sense of minimum MSE. And the inverse of P
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is known as the Fisher information matrix under the linear Gaussian measurement model

J = P−1 = C−1
θθ + HTC−1

v H.

2.5 Preliminaries: convex and nonconvex optimization

Epigraph

The graph of a function f : Rn → R is defined as [59] {(x, f(x)) | x ∈ dom f}, which is a subset

of Rn+1. The epigraph of a function f is defined as

epi f = {(x, t) | x ∈ dom f, f(x) ≤ t}.

Here ‘Epi’ means ‘above’ so epigraph means ‘above the graph’.

The link between convex sets and convex functions is via the epigraph: A convex function is

convex if and only if its epigraph is a convex set.

Indicator function of a constrained set

Let C be a convex/nonconvex set, and consider the function IC with domain C and IC(x) = 0 for

all x ∈ C. Its extended-value version is given by

IC(x) =

 0 x ∈ C

∞ x /∈ C,

which is called the indicator function of the set C.
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Semidefinite programming

A standard form semidefinite program (SDP) has linear equality constraints, and a matrix general-

ized inequality defined on a positive semidefinite cone,

minimize tr(CX)

subject to tr(AiX) = bi, i = 1, 2, . . . , p

X � 0,

where C, {Ai} and {bi} are known problem data, and � denotes a generalized inequality with

respect to a positive semidefinite cone, X � Y, which means that Y −X is positive semidefinite.

Alternating direction method of multipliers

ADMM is an operator splitting method that solves convex problems of the form [60]

minimize f(x) + g(y)

subject to Ax + By = c,
(2.4)

where f and g may be nonsmooth or indicator functions, and A, B and c are known coefficients.

The standard ADMM algorithm at the kth iteration is

xk+1 = arg min
x

L(x,yk,µk) (2.5)

yk+1 = arg min
y

L(xk+1,y,µk) (2.6)

µk+1 = µk + ρ(xk+1 − yk+1), (2.7)

where ρ > 0 is a step size parameter, µ is the dual variable associated with the constraint of

problem (2.4), and L is the augmented Lagrangian function corresponding to problem (2.4)

L(x,y,µ) = f(x) + g(y) + µT (Ax + By − c) + (ρ/2)‖Ax + By − c‖2
2.
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The initial points y0 and µ0 can be arbitrarily chosen, and under some mild conditions [60,

Sec. 3.2], ADMM converges to the optimal solution of problem (2.4).
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CHAPTER 3

SENSOR SELECTION WITH CORRELATED

MEASUREMENT NOISE

3.1 Introduction

In this chapter, we consider the problem of sensor selection for parameter estimation with cor-

related measurement noise. We seek optimal sensor activations by formulating an optimization

problem, in which the estimation error, given by the trace of the inverse of the Bayesian Fisher

information matrix, is minimized subject to energy constraints. We derive the closed form of the

Fisher information matrix with respect to sensor selection variables that is valid for any arbitrary

noise correlation regime, and develop both a convex relaxation approach and a greedy algorithm to

find near-optimal solutions. We demonstrate that the commonly used formulations [19, 34, 35] for

sensor selection are valid only when measurement noises are weakly correlated. In this scenario,

we show that maximization of the trace of the Fisher information matrix used in [19] is equiva-

lent to the problem of maximizing a convex quadratic function over a bounded polyhedron. The

resutling problem structure enables the use of optimization methods with reduced computational

complexity. We further extend our framework of sensor selection to solve the problem of sen-

sor scheduling, where a greedy algorithm is proposed to determine non-myopic (multi-time step
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ahead) sensor schedules.

The rest of the chapter is organized as follows. In Section 3.2, we formulate the problem of

sensor selection with correlated noise. In Section 3.3, we present a convex relaxation approach

and a greedy algorithm to solve the problem of sensor selection with an arbitrary noise correlation

matrix. In Section 3.4, we reveal drawbacks of the existing formulations for sensor selection with

correlated noise, and demonstrate their validity in only the weak noise correlation regime. In

Section 3.5, we extend our framework to solve the problem of non-myopic sensor scheduling.

In Section 3.6, we provide numerical results to illustrate the effectiveness of our approach, and

to reveal the effect of noise correlation on estimation performance. We summarize our work in

Section 3.7,

3.2 Problem statement

We wish to estimate a random vector x ∈ Rn with a Gaussian prior probability density function

(PDF) N (µ,Σ). Observations of x from m sensors are corrupted by correlated measurement

noise. To strike a balance between estimation accuracy and sensor activations, we formulate the

problem of sensor selection, where the estimation error is minimized subject to a constraint on the

total number of sensor activations.

Consider a linear system

y = Hx + v, (3.1)

where y ∈ Rm is the measurement vector whose mth entry corresponds to a scalar observation

from the mth sensor, H ∈ Rm×n is the observation matrix, and v ∈ Rm is the measurement noise

vector that follows a Gaussian distribution with zero mean and an invertible covariance matrix R.

We assume that x and v are mutually independent random variables, and the noise covariance

matrix is positive definite and thus invertible. We note that the noise covariance matrix is not

restricted to being diagonal, so that the measurement noise could be correlated among the sensors.
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The task of sensor selection is to determine the best subset of sensors to activate in order to

minimize the estimation error, subject to a constraint on the number of activations. We introduce a

sensor selection vector to represent the activation scheme

w = [w1, w2, . . . , wm]T , wi ∈ {0, 1}, (3.2)

where wi indicates whether or not the ith sensor is selected. For example, if the ith sensor reports

a measurement then wi = 1, otherwise wi = 0. In other words, the active sensor measurements

can be compactly expressed as

yw = Φwy = ΦwHx + Φwv, (3.3)

where yw ∈ R‖w‖1 is the vector of measurements of selected sensors, ‖w‖1 is the `1-norm of

w which yields the total number of sensor activations, Φw ∈ {0, 1}‖w‖1×m is a submatrix of

diag(w) after all rows corresponding to the unselected sensors have been removed, and diag(w) is

a diagonal matrix whose diagonal entries are given by w. Note that Φw and w are linked as below

ΦwΦT
w = Iw and ΦT

wΦw = diag(w), (3.4)

where Iw denotes an identity matrix with dimension ‖w‖1.

We employ the LMMSE to estimate the unknown parameter under the Bayesian setup. It

is worth mentioning that the use of the Bayesian estimation framework ensures the validity of

parameter estimation for an underdetermined system, in which the number of selected sensors is

less than the dimension of the parameter to be estimated.

To evaluate the estimation performance, we consider the Bayesian Fisher information matrix

Jw for a linear Gaussian measurement model with a Gaussian prior distribution (see Chapter 2.4)

Jw = Σ−1 + HTΦT
wR−1

w ΦwH, Rw = ΦwRΦT
w, (3.5)
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where the second term is related to the sensor selection scheme. It is clear from (3.5) that the

dependence of Jw on w is through Φw. This dependency does not lend itself to easy optimization

of scalar-valued functions of Jw with respect to w. In what follows, we will rewrite Jw as an

explicit function of the selection vector w.

Closed form of Fisher information for sensor selection

The key idea of expressing (3.5) as an explicit function of w is to replace Φw with w based on

their relationship given by (3.4). Consider a decomposition of the noise covariance matrix [61]

R = aI + S, (3.6)

where a positive scalar a is chosen such that the matrix S is positive definite, and I is the identity

matrix. We remark that the decomposition given in (3.6) is readily obtained through an eigenvalue

decomposition of the positive definite matrix R, and it helps us in deriving the closed form of the

Fisher information matrix with respect to w.

According to (3.6), we rewrite a part of the second term on the right hand side of (3.5) as

ΦT
wR−1

w Φw = ΦT
w(aIw + ΦwSΦT

w)−1Φw

(1)
= S−1−S−1(S−1+a−1ΦT

wΦw)−1S−1

(2)
= S−1−S−1(S−1+a−1 diag(w))−1S−1, (3.7)

where step (1) is obtained from the matrix inversion lemma1, and step (2) holds due to (3.4).

Substituting (3.7) into (3.5), the Fisher information matrix can be expressed as

Jw = Σ−1 + HTS−1H−HTS−1(S−1 + a−1 diag(w))−1S−1H. (3.8)

1For appropriate matrices A, B, C and D, the matrix inversion lemma states that (A + BCD)−1 = A−1 −
A−1B(C−1 +DA−1B)−1DA−1, which yields B(C−1 +DA−1B)−1D = A−A(A+BCD)−1A.
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It is clear from (3.8) that the decomposition of R in (3.6) allows us to isolate the dependence of

Jw on w.

Formulation of optimal sensor selection

We now state the main optimization problem

minimize
w

tr(J−1
w )

subject to 1Tw ≤ s, w ∈ {0, 1}m,
(P0)

where Jw ∈ Rn is given by (3.8), and s ≤ m is a prescribed energy budget given by the maximum

number of sensors to be activated. (P0) is a nonconvex optimization problem due to the presence

of Boolean selection variables. In what follows, we discuss two special cases for the formulations

of the sensor selection problem under two different structures of the noise covariance matrix R: a)

R is diagonal, and b) R has small off-diagonal entries.

When measurement noises are uncorrelated, the noise covariance matrix R becomes diagonal.

From (3.4) and (3.5), the Fisher information matrix in the objective function of (P0) simplifies to

Jw = Σ−1 + HTΦT
wΦwR−1ΦT

wΦwH = Σ−1 +
m∑
i=1

wiR
−1
ii hih

T
i , (3.9)

where hTi denotes the ith row of H, Rii denotes the ith diagonal entry of R. It is clear from (3.9)

that each sensor contributes to Fisher information in an additive manner. As demonstrated in [16]

and [15], the linearity of the inverse mean squared error (Fisher information) with respect to w

enables the use of convex optimization to solve the problem of sensor selection.

When measurement noises are weakly correlated (namely, R has small off-diagonal entries), it

will be shown in Sec. 3.4 that the Fisher information matrix can be approximately expressed as

Ĵw := Σ−1 + HT (wwT ◦R−1)H, (3.10)
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where ◦ stands for the Hadamard (elementwise) product. The problem of sensor selection with

weakly correlated noise becomes

minimize
w

tr
(
Σ−1 + HT (wwT ◦R−1)H

)−1

subject to 1Tw ≤ s, w ∈ {0, 1}m.
(P1)

Compared to the generalized formulation (P0), the objective function of (P1) is convex with re-

spect to the rank-one matrix wwT . Such structure introduces computational benefits while solving

(P1). We emphasize that (P1) has been formulated in [19, 34, 35] for sensor selection with corre-

lated noise, however, using this formulation, without acknowledging that it is only valid when the

correlation is weak, can lead to incorrect sensor selection results. We elaborate on the problem of

sensor selection with weakly correlated noise in Section 3.4.

3.3 General case: proposed optimization methods for sen-

sor selection

In this section, we present two methods to solve (P0): the first is based on convex relaxation

techniques, and the second is based on a greedy algorithm. First, we show that after relaxing the

Boolean constraints the selection problem can be cast as a standard semidefinite program (SDP).

Given the solution of the relaxed (P0) we then use the randomization method to generate a near-

optimal selection scheme. Next, we show that given a subset of sensors, activating a new sensor

always improves the estimation performance. Motivated by this, we present a greedy algorithm

that scales gracefully with the problem size to obtain locally optimal solutions of (P0).
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Convex relaxation

Substituting the expression of Fisher information (3.8) into problem (P0), we obtain

minimize
w

tr
(
C−BT (S−1 + a−1 diag(w))

−1
B
)−1

subject to 1Tw ≤ s, w ∈ {0, 1}m,
(3.11)

where for notational simplicity we have defined C := Σ−1 + HTS−1H and B := S−1H.

In Proposition 3.1, we show that problem (3.11) can be further converted into an SDP with a

(nonconvex) rank-one constraint.

Proposition 3.1. Problem (3.11) is equivalent to

minimize
w,W,Z,V

tr (Z)

subject to

C−V I

I Z

 � 0,

V BT

B S−1 + a−1 diag(w)

 � 0

tr(W) ≤ s, diag(W) = w

W = wwT ,

(3.12)

where w, W ∈ Sm, Z ∈ Sn, V ∈ Sn are optimization variables, and Sn represents the set of n×n

symmetric matrices.

Proof: See Appendix A.1. �

After relaxing the rank-one constraint of problem (3.12) to W � wwT , we reach the SDP

minimize
w,W,Z,V

tr (Z)

subject to constraints of (3.12) except W = wwTW w

wT 1

 � 0,

(3.13)

where the last inequality is derived through the application of a Schur complement to W � wwT .
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We can use an interior-point algorithm to solve the SDP (3.13). In practice, if the dimension

of the unknown parameter vector is much less than the number of sensors, the computational

complexity of SDP is roughly given by O(m4.5) [62]. Once the SDP (3.13) is solved, we employ a

randomization method to generate a near-optimal sensor selection scheme, where the effectiveness

of the randomization method has been shown in our extensive numerical experiments. We refer

the readers to [63] for more details on the motivation and benefits of randomization used in SDR.

The aforementioned procedure is summarized in Algorithm 3.1, which includes the randomization

procedure described in Algorithm 3.2.

Algorithm 3.1 SDR with randomization for sensor selection
Require: prior information Σ, R = aI + S as in (3.6), observation matrix H and energy budget s

1: solve the SDP (3.13) and obtain solution (w,W)
2: call Algorithm 3.2 for Boolean solution.

Algorithm 3.2 Randomization method [63]

Require: solution pair (w,W) from the SDP (3.13)
1: for l = 1, 2, . . . , N do
2: pick a random number ξ(l) ∼ N (w,W −wwT )
3: map ξ(l) to a sub-optimal sensor selection scheme w(l)

w
(l)
j =

{
1 ξ

(l)
j ≥ [ξ(l)]s

0 otherwise,
j = 1, 2, . . . ,m,

where w(l)
j is the jth element of w(l), and [ξ(l)]s denotes the sth largest entry of ξ(l)

4: end for
5: choose a vector in {w(l)}Nl=1 which yields the smallest objective value of (3.11).

Greedy algorithm

We begin by showing in Proposition 3.2 that even in the presence of correlated measurement noise,

the Fisher information increases if an inactive sensor is made active.

Proposition 3.2. If w and w̃ represent two sensor selection vectors, where wi = w̃i for i ∈

{1, 2, . . . ,m} \ {j}, wj = 0 and w̃j = 1, then the resulting Fisher information matrix satisfies
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Jw̃ � Jw. More precisely,

Jw̃ − Jw = cjαjα
T
j , tr(J−1

w )− tr(J−1
w̃ ) =

cjα
T
j J−2

w αj

1 + cjαjJ−1
w αj

≥ 0, (3.14)

where

cj =

 R−1
jj w = 0

(Rjj − rTj R−1
w rj)

−1 otherwise,
αj =

 hj w = 0

HTΦT
wR−1

w rj − hj otherwise,

Rjj is the jth diagonal entry of R, rj represents the covariance vector between the measurement

noise of the jth sensor and that of the active sensors in w, cj > 0, hTj is the jth row of H, Φw and

Rw are given by (3.3) and (3.5), respectively.

Proof: See Appendix A.2. �

It is clear from (3.14) that when an inactive sensor is made active, the increase in Fisher in-

formation leads to an information gain in terms of the rank-one matrix. Since activating a new

sensor does not degrade the estimation performance, the inequality (energy) constraint in (P0) can

be reformulated as an equality constraint.

In a greedy algorithm, we iteratively select a new sensor which gives the largest performance

improvement until the energy constraint is satisfied with equality. The greedy algorithm is at-

tractive due to its simplicity, and has been employed in a variety of applications [11, 64, 65]. In

particular, a greedy algorithm was proposed in [65] for sensor selection under the assumption of

uncorrelated measurement noise. We generalize the framework of [65] by taking into account noise

correlation. Clearly, in each iteration of the greedy algorithm, the newly activated sensor is the one

that maximizes the performance improvement characterized by tr(J−1
w ) − tr(J−1

w̃ ) in (3.14). We

summarize the greedy algorithm in Algorithm 3.3.

In Step 2 of Algorithm 3.3, we search O(m) sensors to achieve the largest performance im-

provement. In (3.14), the computation of J−1
w incurs a complexity of O(n2.373) [66]. Since Algo-

rithm 3.3 terminates after s iterations, its overall complexity is given by O(sm+ sn2.373), where at
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Algorithm 3.3 Greedy algorithm for sensor selection

Require: w = 0, I = {1, 2, . . . ,m} and Jw = Σ−1

1: for l = 1, 2, . . . , s do
2: given w, activate sensor j ∈ I such that tr(J−1

w )− tr(J−1
w̃ ) in (3.14) is maximized

3: update w by setting wj = 1, and update Jw
4: remove j from I.
5: end for

each iteration, the calculation of J−1
w is independent of the search for the new active sensor. If the

dimension of x is much less than the number of sensors, the complexity of Algorithm 3.3 reduces

to O(sm). Our extensive numerical experiments show that the greedy algorithm is able to yield

good locally optimal sensor selection schemes.

3.4 Special case: sensor selection with weak noise correla-

tion

In this section, we establish that in contrast to the approach proposed in this thesis, the existing

sensor selection model in [19,34,35] is only valid when measurement noises are weakly correlated.

In this scenario, the proposed sensor selection problem given by (P0) would simplify to (P1).

Moreover, if the trace of the Fisher information matrix (also known as information gain defined

in [19]) is adopted as the performance measure for sensor selection, we show that the resulting

optimization problem can be cast as a special problem of maximizing a convex quadratic function

over a bounded polyhedron.

Validity of existing formulation: weak correlation

We consider the scenario of weakly correlated noise, in which the noise covariance matrix R has

small off-diagonal entries, namely, noises are weakly correlated across the sensors. For ease of
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representation, we express the noise covariance matrix as

R = Λ + εΥ, (3.15)

where Λ is a diagonal matrix which consists of the diagonal entries of R, εΥ is a symmetric matrix

whose diagonal entries are zero and off-diagonal entries correspond to those of R, the parameter

ε is introduced to govern the strength of noise correlation across the sensors, and Λ and Υ are

independent of ε. Clearly, the covariance of weakly correlated noises can be described by (3.15)

for some small value of ε since Υ is ε-independent. As ε → 0, the off-diagonal entries of R are

forced to go to zero.

Proposition 3.3 below shows that the correct expression (3.5) of Fisher information is equal to

the expression (3.10), as presented in [19, 34, 35], up to first order in ε as ε→ 0.

Proposition 3.3. If measurement noises are weakly correlated and R = Λ + εΥ, then the Fisher

information matrix (3.5) can be expressed as

Jw = Ĵw +O(ε2) as ε→ 0,

where Ĵw is given by (3.10).

Proof: See Appendix A.3. �

It is clear from Proposition 3.3 that (P1) is valid only when the noise correlation is weak.

Proceeding with the same logic as in Proposition 3.1 for the problem reformulation, we can relax

(P1) to the SDP

minimize
w,W,Z

tr(Z)

subject to

Σ−1 + HT (W ◦R−1)H I

I Z

 � 0,

W w

wT 1

 � 0

tr(W) ≤ s, diag(W) = w,

(3.16)
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where Z ∈ Sn is an auxiliary optimization variable. Given the solution pair (w,W) of problem

(3.16), we can use the randomization method in Algorithm 3.2 to construct a near-optimal sensor

selection scheme. The computational complexity of solving problem (3.16) is close to that of

solving the SDP (3.13). However, as will be evident later, the sensor selection problem with

weakly correlated noise can be further simplified if the trace of the Fisher information matrix is

used as the performance measure. In this scenario, the obtained problem structure enables the

use of more computationally inexpensive algorithms, e.g., bilinear programing, to solve the sensor

selection problem.

Sensor selection by maximizing trace of Fisher information

Instead of minimizing the estimation error, the trace of Fisher information (so-called T-optimality

[67]) also has been used as a performance metric in problems of sensor selection [19, 22, 55].

According to [68, Lemma 1], the trace of Fisher information constitutes a lower bound to the trace

of error covariance matrix given by J−1
w in (3.5). That is, tr(J−1

w ) ≥ n2

tr(Jw)
. Motivated by this,

we propose to minimize the lower bound of the objective function in (P1), which leads to the

problem [19]

maximize
w

tr
(
Σ−1 + HT (wwT ◦R−1)H

)
subject to 1Tw ≤ s, w ∈ {0, 1}m.

(P2)

It is worth mentioning that the sensor selection scheme obtained from (P2) may not be optimal

in the MMSE sense. However, the trace operator is linear and introduces computational benefits in

optimization. Reference [19] has shown that (P2) is not convex even if Boolean selection variables

are relaxed. However, there is no theoretical justification and analysis provided in [19] on the

problem structure. In what follows, we demonstrate that the Boolean constraint in (P2) can be

replaced by its convex hull w ∈ [0, 1]m without loss of performance, to obtain an equivalent

optimization problem.
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Proposition 3.4. (P2) is equivalent to

maximize
w

wTΩw

subject to 1Tw ≤ s, w ∈ [0, 1]m,
(3.17)

where Ω is a positive semidefinite matrix given by A(R−1 ⊗ In)AT , ⊗ denotes the Kronecker

product, A ∈ Rm×mn is a block-diagonal matrix whose diagonal blocks are given by {hTi }mi=1,

and hTi denotes the ith row of the measurement matrix H.

Proof: See Appendix A.4. �

It is clear from Proposition 3.4 that (P2) eventually approaches the problem of maximizing a

convex quadratic function over a bounded polyhedron. It is known [69] that finding a globally

optimal solution of (3.17) is NP-hard. Therefore, we resort to local optimization methods, such

as bilinear programming and SDR, to solve problem (3.17). To be specific, bilinear programming

is a special case of alternating convex optimization, where at each iteration we solve two linear

programs. Since bilinear programming is based on linear programming, it scales gracefully with

problem size but with a possibility of only finding local optima. If we rewrite the constraints of

problem (3.17) as quadratic forms in w, (P2) can be further transformed into a nonconvex homo-

geneous quadratically constrained quadratic program (QCQP), which refers to a QCQP without

involving linear terms of optimization variables. In this scenario, SDR can be applied to solve the

problem. Compared to the application of SDR in (3.16), the homogeneous QCQP leads to an SDP

with a smaller problem size. We refer the readers to [56, Sec. V] and [19, Sec. V] for more details

on the application of bilinear programming and SDR.

3.5 Sensor scheduling for parameter tracking

In this section, we extend the sensor selection framework with correlated noise to the problem

of non-myopic sensor scheduling, which determines sensor activations for multiple future time

steps. Since the Fisher information matrices at consecutive time steps are coupled with each other,
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expressing them in a closed form with respect to the sensor selection variables becomes intractable.

Therefore, we employ a greedy algorithm to seek locally optimal solutions of the non-myopic

sensor scheduling problem.

Consider a discrete-time dynamical system

xt+1 = Ftxt + ut (3.18)

yt = Htxt + vt, (3.19)

where xt ∈ Rn is the target state at time t, yt ∈ Rm is the measurement vector whose ith entry

corresponds to a scalar observation from the ith sensor at time t, Ft is the state transition matrix

from time t to time t + 1, and Ht denotes the observation matrix at time t. The inputs ut and vt

are white, Gaussian, zero-mean random vectors with covariance matrices Q and R, respectively.

We note that the covariance matrix R may not be diagonal, since the noises experienced by dif-

ferent sensors could be spatially correlated. We also remark that although the dynamical system

(3.18)-(3.19) is assumed to be linear, it will be evident later that the proposed sensor scheduling

framework is also applicable to non-linear dynamical systems.

The PDF of the initial state x0 at time step t0 is assumed to be Gaussian with mean x̂0 and

covariance matrix P̂0, where x̂0 and P̂0 are estimates of the initial state and error covariance from

the previous measurements obtained using filtering algorithms, such as a particle filter or a Kalman

filter [70,71]. At time step t0, we aim to find the optimal sensor schedule over the next τ time steps

t0 + 1, t0 + 2, . . . , t0 + τ . Hereafter, for notational simplicity, we assume t0 = 0. The sensor

schedule can be represented by a vector of binary variables

w = [wT
1 ,w

T
2 , . . . ,w

T
τ ]T ∈ {0, 1}τm, (3.20)

where wt = [wt,1, wt,2, . . . , wt,m]T characterizes the sensor schedule at time 1 ≤ t ≤ τ . In what

follows, we assume that τ > 1. If τ = 1, the non-myopic sensor scheduling problem reduces to

the sensor selection problem for one snapshot or the so-called myopic scheduling problem. This
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case has been studied in the previous sections.

In the context of state tracking [36, 72], the Fisher information matrix has the following recur-

sive form

Jt = (Q + Ft−1J
−1
t−1F

T
t−1)−1 + Gt (3.21)

Gt = HT
t ΦT

wt(ΦwtRΦT
wt)
−1ΦwtHt, (3.22)

for t = 1, 2, . . . , τ , where Jt denotes the Fisher information at time t, Gt denotes the part of

Fisher information matrix which incorporates the updated measurement, and Φwt is a submatrix of

diag(wt) where all the rows corresponding to the unselected sensors are removed. It is clear from

(3.7) that the term involving Φwt in (3.22) can be further expressed as an explicit form with respect

to wt.

Remark 1. In case of non-linear measurement models, the term Gt in the Fisher information

matrix becomes

Gt = Ext [(∇xTt
h)TΦT

wt(ΦwtRΦT
wt)
−1Φwt(∇xTt

h)],

where h(·) is a nonlinear measurement function, and∇xTt
h is the Jacobian matrix of h with respect

to xt. In this equation, the expectation with respect to xt is commonly calculated with the help of

the prediction state x̂t := Ft−1Ft−2 · · ·F0x̂0 [71, 73]. To be concrete, we approximate the PDF of

xt with p(xt) = δ(xt − x̂t), where δ(·) is a δ-function. The matrix Gt is then given by

Gt = ĤT
t ΦT

wt(ΦwtRΦT
wt)
−1ΦwtĤt, (3.23)

where Ĥt := ∇xTt
h(x̂t).

We note that the Fisher information matrices at consecutive time steps are coupled with each

other due to the recursive structure in (3.21). Therefore, Jt is a function of all selection variables

{wk}tk=1. The recursive structure makes the closed form of Fisher information intractable. This
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is in sharp contrast with the problem of myopic sensor selection, where expressing the Fisher

information matrix in a closed form is possible.

We now pose the non-myopic sensor scheduling problem

minimize
w

1

τ

τ∑
t=1

tr(J−1
t )

subject to 1Tw ≤ s, (3.24a)∑τ
t=1wt,i ≤ si, i = 1, 2, . . . ,m, (3.24b)

w ∈ {0, 1}mτ ,

where Jt is determined by (3.21)-(3.22), the cumulative energy constraint (3.24a) restricts the

total number of activations for all sensors over the entire time horizon, and the individual energy

constraint (3.24b) implies that the ith sensor can report at most si measurements over τ time steps.

To solve problem (3.24) in a numerically efficient manner, we employ a greedy algorithm that

iteratively activates one sensor at a time until the energy constraints are satisfied with equality. The

proposed greedy algorithm can be viewed as a generalization of Algorithm 3.3 by incorporating the

length of the time horizon and individual energy constraints.

We elaborate on the greedy algorithm. In the initial step, we assume w = 0 and split the

set of indices of w into m subsets {Ii}mi=1, where we use the entries of the set Ii to keep track

of all the time instants at which the ith sensor is inactive. The set Ii is initially given by {i, i +

m, . . . , i + (τ − 1)m} for i = 1, 2, . . . ,m. There exists a one-to-one correspondence between

an index j ∈ Ii and a time instant t ∈ {1, 2, . . . , τ} at which the ith sensor can be scheduled,

where j = i + (t − 1)m. At every iteration of the greedy optimization algorithm, we update Ii

for i = 1, 2, . . . ,m such that it only contains indices of zero entries of w. The quantity τ − |Ii|

gives the number of times that the ith sensor has been used, where | · | denotes the cardinality of

a set. The condition τ − |Ii| ≥ si indicates a violation of the individual energy constraint. Note

that the union {I1 ∪ I2 ∪ . . . ∪ Im} gives all the remaining time instants at which the sensors can

be activated. We enumerate all the indices in the union to determine the index j∗ such that the
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objective function of (3.24) is minimized as wj∗ = 1. We summarize the greedy algorithm for

non-myopic sensor scheduling in Algorithm 3.4.

Algorithm 3.4 Greedy algorithm for sensor scheduling

Require: w = 0 and Ii = {i, i+m, . . . , i+ (τ − 1)m} for i = 1, 2, . . . ,m
1: for l = 1, 2, . . . ,min{s,

∑m
i=1 si} do

2: if τ − |Ii| ≥ si, then replace Ii with an empty set for i = 1, 2, . . . ,m,
3: enumerate indices of w in {I1∪I2∪ . . .∪Im} to select j∗ such that the objective function

of (3.24) is minimized when wj = 1,
4: remove j from Ii∗ , where i∗ is given by the remainder of j

m
for i∗ 6= m, and i∗ = m if the

remainder is 0.
5: end for

The computational complexity of Algorithm 3.4 is dominated by Step 3. Specifically, we eval-

uate the objective function of (3.24) using O(τm) operations. And the computation of the Fisher

information matrix requires a complexity of O(τm2.373), where O(τ) accounts for the number of

recursions, and O(m2.373) is the complexity of matrix inversion in (3.23) [66]. We emphasize

that different from Proposition 3.2, expressing the closed form of the performance improvement

in a greedy manner becomes intractable, since the Fisher information matrices are coupled with

each other over the time horizon. Therefore, the computation cost of Algorithm 3.4 is given by

O(τ 2m3.373) per iteration.

For additional perspective, we compare the computational complexity of Algorithm 3.4 with

the method in [18], where a reweighted `1 based quadratic programming (QP) was used to ob-

tain locally optimal sensor schedules under linear (or linearized) dynamical systems with corre-

lated noise. It was shown in [18] that the computational complexity of QP was ideally given by

O(m2.5τ 5) for every reweighting `1 iteration. We note that the computational complexity of the

greedy algorithm increases slightly in terms of the network size by a factor m0.873, while it de-

creases significantly in terms of the length of the time horizon by a factor τ 3.
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3.6 Numerical results

In this section, we demonstrate the effectiveness of the proposed approach for sensor selection

with correlated measurement noise. In our numerical examples, we assume that the sensors are

randomly deployed in a square region, where each of them provides the measurement of an un-

known parameter or state. For parameter estimation, we use the LMMSE to estimate the unknown

parameter. For state tracking, we use the extended Kalman filter [58, Sec. 13] to track the target

state.

Sensor selection for parameter estimation

We consider a network withm ∈ {20, 50} sensors to estimate the vector of parameters x ∈ Rn with

n = 2, where sensors are randomly deployed over a 50×50 lattice. The prior PDF of x is given by

x ∼ N (µ,Σ), whereµ = [10, 10]T and Σ = I. For simplicity, the row vectors of the measurement

matrix H are chosen randomly, and independently, from the distribution N (0, I/
√
n) [15]. The

covariance matrix of the measurement noise is set by an exponential model [74]

Rij = cov(vi, vj) = σ2
v e
−%‖βi−βj‖2 , (3.25)

for i, j = 1, 2, . . . ,m, where σ2
v = 1, βi ∈ R2 is the location of the ith sensor in the 2D plane,

‖ · ‖2 denotes the Euclidean norm, and % is the correlation parameter which governs the strength of

spatial correlation, namely, a larger (or smaller) % corresponds to a weaker (or stronger) correlation.

We choose N = 100 while performing the randomization method. Also, we employ an exhaustive

search that enumerates all possible sensor selection schemes to obtain the globally optimal solution

of (P0). The estimation performance is measured through the empirical MSE, which is averaged

over 1000 numerical trials.

In Fig. 3.1, we present the MSE as a function of the energy budget by solving (P0) with cor-

relation parameter % = 0.1. In Fig. 3.1-(a) for the tractability of exhaustive search, we consider a

small network with m = 20 sensors. We compare the performance of the proposed greedy algo-
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rithm and SDR with randomization to that of SDR without randomization and exhaustive search.

In particular, the right plots of Fig. 3.1-(a) show the performance gaps for the obtained locally

optimal solutions compared to the globally optimal solutions resulting from an exhaustive search.

We observe that the SDR method with randomization outperforms the greedy algorithm and yields

optimal solutions. The randomization method also significantly improves the performance of SDR

in sensor selection. This is not surprising, and our numerical observations agree with the litera-

ture [63, 75] that demonstrate the power and utility of randomization in SDR.

In Fig. 3.1-(b), we present the MSE as a function of the energy budget for a relatively large

network (m = 50). Similar to the results of Fig. 3.1-(a), the SDR method with randomization

yields the lowest estimation error. We also observe that the MSE ceases to decrease significantly

when s ≥ 20. This indicates that a subset of sensors is sufficient to provide satisfactory estimation

performance, since the presence of correlation among sensors introduces information redundancy

and makes observations less diverse.

In Fig. 3.2, we solve the problem of sensor selection with weak noise correlation (% = 0.5),

and present the MSE as a function of the energy budget s ∈ {2, 3, . . . , 50}. We compare the

performance of three optimization approaches: SDR with randomization for solving (P1), bilinear

programming (BP) for solving (P2), and SDR with randomization for solving (P2). We recall that

in (P1) the goal is to minimize the trace of the error covariance matrix and in (P2) the goal is to

maximize the trace of Fisher information. As we can see, approaches that maximize the trace of

Fisher information yield worse estimation performance than those that minimize the estimation

error. This is because (P2) ignores the contribution of prior information Σ in sensor selection. We

also note that although BP (a linear programming based approach) has the lowest computational

complexity, it leads to the worst optimization performance.

In Fig. 3.3, we present the MSE as a function of the correlation parameter %, where m = 50

and s ∈ {7, 13}. We consider sensor selection schemes by using SDR with randomization to solve

problems (P0) and (P1), respectively. For comparison, we also present the estimation performance

when all the sensors are selected. As shown in Fig. 3.3, we consider two correlation regimes: weak
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correlation and strong correlation. We observe that in the weak correlation regime, solutions of

both (P0) and (P1) yield the same estimation performance. For very large values of % (say % > 2 in

this example), the MSE gets saturated since measurement noises tend to be uncorrelated. This leads

to the same sensor selection scheme and the same estimation error even if we continue to increase

%. In the strong correlation regime, solutions of (P1) lead to worse estimation performance for

sensor selection. We also observe that the sensitivity to the sensor selection strategy reduces if the

strength of correlation becomes extremely large, e.g., % ≤ 0.05. More interestingly, the estimation

performance is improved as the correlation becomes stronger. A similar result was reported in [76],

where the presence of correlation was shown to significantly improve the estimation performance.

This is because for strongly correlated noise, noise cancellation could be achieved by subtracting

one observation from the other [76]. Further if we fix the value of %, the estimation error decreases

when the energy budget increases, and the performance gap between solutions of (P0) and (P1)

reduces.

Sensor scheduling for state tracking

In this example, we track a target with m = 30 sensors over 30 time steps. We assume that the

target state is a 4 × 1 vector xt = [xt,1, xt,2, xt,3, xt,4]T , where (xt,1, xt,2) and (xt,3, xt,4) denote

the target location and velocity at time step t. The state equation (3.18) follows a white noise

acceleration model [71]

Ft =



1 0 ∆ 0

0 1 0 ∆

0 0 1 0

0 0 0 1


, Q = q



∆3

3
0 ∆2

2
0

0 ∆3

3
0 ∆2

2

∆2

2
0 ∆ 0

0 ∆2

2
0 ∆


,

where ∆ and q denote the sampling interval and the process noise parameter, respectively. In our

simulations, we set ∆ = 1 and q = 0.01. The prior PDF of the initial state is assumed to be

Gaussian with mean x̂0 = [1, 1, 0.5, 0.5]T and covariance Σ̂0 = diag(1, 1, 0.1, 0.1).
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The measurement equation follows a power attenuation model [77],

hi(xt) =

√
P0

1 + (xt,1 − βi,1)2 + (xt,2 − βi,2)2
(3.26)

for i = 1, 2, . . . ,m, where P0 = 104 is the signal power of the source, and the pair (βi,1, βi,2) is the

position of the ith sensor. The covariance matrix of the measurement noise is given by (3.25) with

% = 0.035.

In the sensor scheduling problem (3.24), we assume s =
∑m

i=1 si and s1 = s2 = · · · =

sm. In order to implement the proposed greedy algorithm and the existing method in [18], the

nonlinear measurement function (3.26) is linearized at the prediction state x̂t = Ft−1Ft−2 · · ·F0x̂0

as suggested in Remark 1. We determine sensor schedules for every τ = 6 future time steps, and

then update the estimate of the target state based on the selected measurements via an extended

Kalman filter [78]. The estimation performance is measured through the empirical MSE, which is

obtained by averaging the estimation error over 30 time steps and 1000 simulation trials.

In Fig. 3.4, we present the MSE as a function of the individual energy budget. We compare the

performance of our proposed greedy algorithm with that of the sensor scheduling method in [18].

We remark that the method in [18] relies on a reformulation of linearized dynamical systems and an

`1 relaxation in optimization. In contrast, the proposed greedy algorithm is independent of the dy-

namical system models and convex relaxations. We observe that the greedy algorithm outperforms

the method in [18]. This result together with the previous results in Fig. 3.1 and 3.2 implies that

the greedy algorithm could yield satisfactory estimation performance. Sensor schedules at time

steps t = 10 and 24 are shown in Fig. 3.5. We observe that some sensors closest to the target are

selected due to their high signal power. However, from the entire network point of view, the active

sensors tend to be spatially distributed rather than aggregating in a small neighborhood around the

target. This is because observations from neighboring sensors are strongly correlated in space and

may lead to information redundancy in target tracking.
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3.7 Summary

In this chapter, we addressed the problem of sensor selection with correlated measurement noise.

We showed that the commonly used formulation for sensor selection is only valid for the spe-

cial case of weak noise correlation. By contrast, here we proposed a tractable sensor selection

framework that is valid for an arbitrary noise correlation matrix, and presented a suite of efficient

optimization algorithms. Numerical results were provided to illustrate the effectiveness of our ap-

proach and the impact of noise correlation on the performance of sensor selection. In the following

chapter, we will study the periodic sensor scheduling problem in networks of dynamical systems.
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Fig. 3.1: MSE versus energy budget with correlated measurement noise.
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CHAPTER 4

OPTIMAL PERIODIC SENSOR

SCHEDULING VIA THE DESIGN OF SPARSE

ESTIMATOR GAIN MATRICES

4.1 Introduction

Periodicity in the optimal sensor schedule was observed for both finite and infinite time horizon

problems in which a periodic schedule was not assumed a priori. It was proved in [24], that the

optimal sensor schedule for an infinite horizon problem can be approximated arbitrarily well by a

periodic schedule with a finite period. We emphasize that the results in [24] are nonconstructive,

in the sense that it is shown that the optimal sensor schedule is time-periodic but an algorithm

for obtaining this schedule, or even the length of its period, is not provided. Although periodicity

makes infinite horizon sensor scheduling problems tractable via the design of an optimal schedule

over a finite period, it poses other challenges in problem formulation and optimization under the

condition of periodicity.

In this chapter, we consider the problem of finding optimal time-periodic sensor schedules for

estimating the state of discrete-time dynamical systems. We associate the activation of sensors
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with the promotion of nonzero columns of an estimator gain matrix. Based on this association, we

formulate an optimization problem in which we minimize the trace of the error covariance with

respect to the estimator gain while simultaneously penalizing the number of nonzero columns of

the estimator gain. We show that the desired estimator gain matrices satisfy a coupled sequence of

periodic Lyapunov recursions, where a new block-cyclic representation is introduced to transform

the coupled matrix recursions into algebraic matrix equations for ease of computation. Through

application of ADMM, we uncover relationships between the frequency constraint parameter, the

sparsity-promoting parameter, and the sensor schedule.

The remainder of the chapter is organized as follows. In Section 4.2, we motivate the prob-

lem of periodic sensor scheduling over an infinite time horizon. In Section 4.3, we formulate the

sparsity-promoting periodic sensor scheduling problem. In Section 4.4, we invoke the ADMM

method, which leads to a pair of efficiently solvable subproblems. In Section 4.5, we illustrate the

effectiveness of our proposed approach through examples. We summarize our work in Section 4.6.

4.2 Periodicity of infinite horizon sensor scheduling

Consider a discrete-time linear dynamical system evolving according to the equations

xk+1 = Axk + Bwk, (4.1)

yk = Cxk + vk, (4.2)

where xk ∈ RN is the state vector at time k, yk ∈ RM is the measurement vector whose mth

entry corresponds to a scalar observation from sensor m, A, B, and C are matrices of appropriate

dimensions. The inputs wk and vk are white, Gaussian, zero-mean random vectors with covari-

ance matrices Q and R, respectively. Finally, we assume that (A,C) is detectable and (A,Σ) is

stabilizable, where ΣΣT = BQBT .

For ease of describing the sensor schedule, we introduce the auxiliary binary variables ζk,m ∈

{0, 1}, to represent whether or not the mth sensor is activated at time k. The sensor schedule
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over an infinite time horizon can then be denoted by µ∞ = [ζ1, ζ2, . . .], where the vector ζk =

[ζk,1, . . . , ζk,M ]T indicates which sensors are active at time k. The performance of an infinite-

horizon sensor schedule is then measured as follows [21, 22],

J(µ∞) , lim
K→∞

1

K

K∑
k=1

tr (Pk) (4.3)

where Pk is the estimation error covariance at time k under the sensor schedule µ∞. Due to

the combinatorial nature of the problem, it is intractable to find the optimal sensor schedule that

minimizes the cost (4.3) in general [22].

In [79], it was suggested that the optimal sensor schedule can be treated as a time-periodic

schedule over the infinite time horizon if the system (4.1)-(4.2) is detectable and stabilizable. Fur-

thermore, in [24] it was proved that the optimal sensor schedule for an infinite horizon problem

can be approximated arbitrarily well by a periodic schedule with a finite period, and that the error

covariance matrix converges to a unique limit cycle. In this case, the cost in (4.3) is given by

J(µK) =
1

K

K−1∑
k=0

tr (Pk) (4.4)

whereK is the length of the period and Pk is the error covariance matrix at instant k of its limit cy-

cle. In the thesis, we assume the lengthK of the period is given, and will focus on the optimization

method to find the optimal periodic sensor schedule.

4.3 Problem statement

For the discrete-time linear dynamical system (4.1)–(4.2), we consider state estimators of the form

x̂k+1 = Ax̂k + Lk(yk −Cx̂k) = (A− LkC)x̂k + Lkyk,
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where Lk is the estimator gain (also known as the observer gain [80]) at time k. In what follows,

we aim to determine the matrices Lk, k = 0, 1, . . ., by solving an optimization problem that, in

particular, promotes the column sparsity of Lk. We define the estimation error covariance Pk as

Pk = E{(xk − x̂k)(xk − x̂k)
T},

where E is the expectation operator.1 It is easy to show that Pk satisfies the Lyapunov recursion

Pk+1 = (A− LkC)Pk(A− LkC)T + BQBT + LkRLT
k . (4.5)

Finally, partitioning the matrices Lk and C into their respective columns and rows, we have

LkC =

[
Lk,1 Lk,2 . . . Lk,M

]


CT
1

CT
2

...

CT
M


= Lk,1C

T
1 + Lk,2C

T
2 + · · ·+ Lk,MCT

M , (4.6)

where each row of C characterizes the measurement of one sensor. Therefore, each column of the

matrix Lk can be thought of as corresponding to the measurement of a particular sensor.

In estimation and inference problems using wireless sensor networks, minimizing the energy

consumption of sensors is often desired. Therefore, we seek algorithms that schedule the turning

on and off of the sensors in order to strike a balance between energy consumption and estimation

performance. Suppose, for example, that at time step k only the νth sensor reports a measurement.

In this case, it follows from (4.6) that LkC = Lk,νC
T
ν , where CT

ν is the νth row of C. This can also

be interpreted as having the column vectors Lk,m equal to zero for all m 6= ν. Thus, hereafter we

assume that the measurement matrix C is constant and the scheduling of the sensors is captured

by the nonzero columns of the estimator gains Lk, in the sense that if Lk,m = 0 then at time k the

1In the system theory literature, x̂k and Pk are often denoted by x̂k|k−1 and Pk|k−1; here we use x̂k and Pk for
simplicity of notation.
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mth sensor is not making a measurement.

We aim to search for optimal time-periodic sensor schedules, i.e., we seek optimal sequences

{Lk}k=0,1,...,K−1 and {Pk}k=0,1,...,K−1 that satisfy

Lk+K = Lk, Pk+K = Pk, (4.7)

where K is a given period. Note that the choice of K is not a part of the optimization problem

considered in this thesis. As suggested in [24], one possible procedure for choosing K is to find

the optimal sensor schedule for gradually-increasing values of K until the performance ceases to

improve significantly. Furthermore, the condition on the periodicity of Pk assumes that the system

and estimator with Lk+K = Lk have been running for a long time so that Pk has reached its steady-

state limit cycle [24]. In this thesis, we consider k = −∞ as the initial time and without loss of

generality consider the design of Lk over the period k = 0, 1, . . . , K − 1, when the system has

settled into its periodic cycle.

To incorporate the energy constraints on individual sensors over a period of length K, we

consider

K−1∑
k=0

card
(
‖Lk,m‖2

)
≤ ηm, m = 1, 2, . . . ,M, (4.8)

where ηm denotes the measurement frequency bound. This implies that the mth sensor can make

and transmit at most ηm measurements over the period of length K. Placing a bound on the

measurement frequency of each sensor avoids scenarios in which a set of ‘informative sensors’

are successively selected, which would result in their early energy depletion. For simplicity, we

assume η1 = η2 = . . . = ηM = η. We remark that the proposed sensor scheduling methodology

applies equally well to the case where the ηi are not necessarily equal to each other.



54

We pose the optimal sensor scheduling problem as the optimization problem

minimize
K−1∑
k=0

tr(Pk) + γ
K−1∑
k=0

g(Lk)

subject to


Lyapunov recursion (4.5) for k= 0,1, . . . ,K−1

periodicity condition (4.7)

measurement frequency constraints (4.8),

(4.9)

where the matrices {Lk}k=0,··· ,K−1 are the optimization variables, card(·) denotes the cardinality

function which gives the number of nonzero elements of its (vector) argument, and

g(Lk) := card
( [
‖Lk,1‖2 ‖Lk,2‖2 · · · ‖Lk,M‖2

] )
. (4.10)

Therefore g(Lk) is equal to the number of nonzero columns of Lk, also referred to as the column-

cardinality of Lk. The incorporation of the sparsity-promoting term g(·) in the objective function

encourages the use of a small subset of sensors at each time instant. The positive scalar γ char-

acterizes the relative importance of the two conflicting terms in the objective, namely the relative

importance of achieving good estimation performance versus activating a small number of sensors.

4.4 Optimal periodic sensor scheduling using ADMM

In this section, we apply ADMM to the sensor scheduling problem (4.9). Our treatment uses ideas

introduced in [81], where ADMM was used for the identification of optimal sparse state-feedback

gains. We extend the framework of [81] to account for the time periodicity of the estimator gains,

their sparsity across both space and time, and the addition of measurement frequency constraints

on individual sensors.

We begin by reformulating the optimization problem in (4.9) in a way that lends itself to the
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application of ADMM. For Pk that satisfies the Lyapunov recursion in (4.5), it is easy to show that

Pk = BQBT + Lk−1RLT
k−1 +

−∞∑
n=k−1

(A− Lk−1C) · · · (A− LnC)(BQBT + Ln−1RLT
n−1)

· (A− LnC)T · · · (A− Lk−1C)T .

Invoking the periodicity of Lk, tr(Pk) can be expressed as a function fk of {Lk}k=0,··· ,K−1 so that

the optimization problem (4.9) can be rewritten as

minimize
K−1∑
k=0

fk(L0, · · · ,LK−1) + γ
K−1∑
k=0

g(Lk)

subject to
K−1∑
k=0

card
(
‖Lk,m‖2

)
≤ η, m = 1, 2, . . . ,M.

We next introduce the indicator function corresponding to the constraint set of the above opti-

mization problem as

I({Lk}) =


0 if

∑K−1
k=0 card

(
‖Lk,m‖2

)
≤ η for m = 1, 2, . . . ,M,

+∞ otherwise,
(4.11)

where for notational simplicity we have used, and henceforth will continue to use, {·} instead of

{·}k=0,...,K−1. Incorporating the indicator function into the objective function, problem (4.9) is

equivalent to the unconstrained optimization problem

minimize
K−1∑
k=0

fk({Lk}) + γ
K−1∑
k=0

g(Lk) + I({Lk}).

Finally, we introduce the new set of variables {Gk}, together with the new set of constraints
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Lk = Gk, k = 0, 1, . . . , K − 1, and formulate

minimize
K−1∑
k=0

fk({Lk}) + γ
K−1∑
k=0

g(Gk) + I({Gk})

subject to Lk = Gk, k = 0, 1, . . . , K − 1,

(4.12)

which is now in a form suitable for the application of ADMM.

The augmented Lagrangian [81, 82] corresponding to optimization problem (4.12) is given by

L ({Lk}, {Gk}, {Λk}) =
K−1∑
k=0

fk({Lk}) + γ
K−1∑
k=0

g(Gk) + I({Gk})

+
K−1∑
k=0

tr[Λk(Lk −Gk)] +
ρ

2

K−1∑
k=0

||Lk −Gk||2F , (4.13)

where the matrices {Λk} are the Lagrange multipliers (also referred to as the dual variables), the

scalar ρ > 0 is a penalty weight, and ‖ · ‖F denotes the Frobenius norm of a matrix, ‖X‖2
F =

tr(XTX). The ADMM algorithm can be described as follows; see Chapter 2.5. For i = 0, 1, . . .,

we iteratively execute the following three steps

{Li+1
k } := arg min

{Lk}
L ({Lk}, {Gi

k}, {Λi
k}), (4.14)

{Gi+1
k } := arg min

{Gk}
L ({Li+1

k }, {Gk}, {Λi
k}), (4.15)

Λi+1
k := Λi

k + ρ(Li+1
k −Gi+1

k ), k = 0, 1, . . . , K−1, (4.16)

until both of the conditions
∑K−1

k=0 ‖L
i+1
k − Gi+1

k ‖F ≤ ε, and
∑K−1

k=0 ‖G
i+1
k − Gi

k‖F ≤ ε are

satisfied.

The rationale behind using ADMM can be described as follows [81]. The original noncon-

vex optimization problem (4.9) is difficult to solve due to the nondifferentiability of the sparsity-

promoting function. By defining the new set of variables {Gk}, we effectively separate the original

problem into an “L-minimization” step (4.14) and a “G-minimization" step (4.15), of which the
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former can be addressed using variational methods and descent algorithms and the latter can be

solved analytically.

L-minimization using Anderson-Moore method

Completing the squares with respect to {Lk} in the augmented Lagrangian (4.13), the L-minimization

step in (4.14) can be expressed as [81, 82]

minimize
K−1∑
k=0

fk({Lk}) +
K−1∑
k=0

ρ

2
||Lk −Ui

k||2F (4.17)

where Ui
k := Gi

k− (1/ρ)Λi
k for k = 0, 1, . . . , K−1. For notational simplicity, henceforth we will

use Uk instead of Ui
k, where i indicates the iteration index. We bring attention to the fact that, by

defining the indicator function I in (6.22) and then splitting the optimization variables in (4.12),

we have effectively removed both sparsity penalties and energy constraints from the variables {Lk}

in the L-minimization problem (4.17). This is a key advantage of applying ADMM to the sensor

scheduling problem. Recalling the definition of fk, problem (4.17) can be written as

minimize φ({Lk}) :=
K−1∑
k=0

tr(Pk) +
K−1∑
k=0

ρ

2
||Lk −Uk||2F

subject to


Lyapunov recursion (4.5) for k = 0, 1, . . . , K−1,

periodicity condition (4.7),

where {Lk} are optimization variables.

Proposition 4.1. The necessary conditions for the optimality of a sequence {Lk} can be expressed

as the set of coupled matrix recursions

Pk+1 = (A− LkC)Pk(A− LkC)T + BQBT + LkRLT
k

Vk = (A− LkC)TVk+1(A− LkC) + I

0 = 2Vk+1LkR− 2Vk+1(A− LkC)PkC
T+ ρ(Lk −Uk)
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for k = 0, . . . , K − 1, where Uk := Gi
k − (1/ρ)Λi

k and LK = L0, PK = P0. The expression on

the right of the last equation is the gradient of φ with respect to Lk.

Proof: See Appendix A.5. �

It is a difficult exercise to solve the above set of matrix equations due to their coupling. We

thus employ the Anderson-Moore method [81, 83], which is an efficient technique for iteratively

solving systems of coupled Lyapunov and Sylvester equations. We note, however, that the set of

matrix equations given in the proposition include (periodic) Lyapunov recursions rather than (time-

independent) Lyapunov equations. We next apply what can be thought of as a lifting procedure

[84] to take the periodicity out of these equations and place them in a form appropriate for the

application of the Anderson-Moore method.

Let T denote the following permutation matrix in block-cyclic form

T :=



0 I

I
. . .
. . . . . .

I 0


, and define L := T diag{Lk} =



0 LK−1

L0

. . . . . .

LK−2 0


,

P := diag{Pk}, V := diag{Vk}, U := T diag{Uk}, Q := diag{Q}, R := diag{R}

I := diag{I}, A := T diag{A}, B := diag{B}, C := diag{C}.

In the sequel, we do not distinguish between the sequence {Lk} and its cyclic form L, and will

alternate between the two representations as needed.

The recursive equations in the statement of Proposition 4.1 can now be rewritten in the time-

independent form

P = (A−LC)P(A−LC)T + BQBT + LRLT (4.18)

V = (A−LC)TV(A−LC) + I (4.19)

0 = 2VLR− 2V(A−LC)PCT + ρ(L− U) (4.20)
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Furthermore, defining∇Φ := T diag{∇Lkφ}, it can be shown that

∇Φ = 2VLR− 2V(A−LC)PCT + ρ(L− U), (4.21)

i.e., the right side of (4.20) gives the gradient direction for L, or equivalently the gradient direction

for each Lk, k = 0, 1, . . . , K − 1.

We briefly describe the implementation of the Anderson-Moore method as follows. For each

iteration of this method, we first keep the value of L fixed and solve (4.18) and (4.19) for P and V ,

then keep P and V fixed and solve (4.20) for a new value Lnew of L. Proposition 4.2 shows that

the difference L̃ := Lnew −L between the values of L over two consecutive iterations constitutes

a descent direction for φ({Lk}); see [81, 83] for related results. We employ a line search [59] to

determine the step-size s in L + sL̃ in order to accelerate the convergence to a stationary point.

Proposition 4.2. The difference L̃ := Lnew −L constitutes a descent direction for φ({Lk}),

〈∇Φ, L̃〉 < 0, (4.22)

where 〈∇Φ, L̃〉 := tr(∇ΦT L̃). Moreover, 〈∇Φ(L), L̃〉 = 0 if and only if L is a stationary point

of Φ, i.e.,∇Φ(L) = 0.

Proof: The proof is similar to [85, Prop. 1] and omitted for brevity. �

We summarize the Anderson-Moore method for solving the L-minimization step in Algo-

rithm 4.1. This algorithm calls on the Armijo rule [86], given in Algorithm 4.2, to update L.

Algorithm 4.1 L-minimization step (4.14) using Anderson-Moore method

1: If i = 0, choose L0. If i ≥ 1, set L0 equal to solution of (4.14) from previous ADMM
iteration.

2: for t = 0, 1, . . . do
3: Set L = Lt and solve (4.18), (4.19) to find P t, V t.
4: Set V = V t, P = P t and solve (4.20) to find L̄t.
5: Compute L̃t = L̄t−Lt and update Lt+1 = Lt+stL̃t, where st is given by Algorithm 4.2.
6: until ‖∇Φ(Lt)‖ < ε.
7: end for
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Algorithm 4.2 Armijo rule for choosing step-size st

1: Set st = 1 and choose α, β ∈ (0, 1).
2: repeat
3: st = βst,
4: until φ(Lt + stL̃t) < φ(Lt) + α st tr

(
∇Φ(Lt)T L̃t

)
.

G-minimization

In this section, we consider the G-minimization step (4.15) and demonstrate that it can be solved

analytically. In what follows, we extend the approach of [81] to account for the periodicity and

energy constraints in the sensor schedule.

Completing the squares with respect to {Gk} in the augmented Lagrangian (4.13), the G-

minimization step in (4.15) can be expressed as [81, 82]

minimize γ
K−1∑
k=0

g(Gk) +
ρ

2

K−1∑
k=0

||Gk − Sik||2F

subject to
K−1∑
k=0

card
(
‖Gk,m‖2

)
≤ η, m = 1, 2, . . . ,M,

where Sik := Li+1
k + (1/ρ)Λi

k for k = 0, 1, . . . , K − 1. For notational simplicity, henceforth we

will use Sk instead of Sik, where i indicates the iteration index. Recalling the definition of g from

(4.10), and replacing ||Gk − Sk||2F with
∑M

m=1 ‖Gk,m− Sk,m‖2
2 yields the equivalent optimization

problem

minimize ψ({Gk}) :=
M∑
m=1

(K−1∑
k=0

γ card
(
‖Gk,m‖2

)
+

K−1∑
k=0

ρ

2
‖Gk,m − Sk,m‖2

2

)
subject to

K−1∑
k=0

card
(
‖Gk,m‖2

)
≤ η, m = 1, 2, . . . ,M,

where we have exploited the column-wise separability of g(·) and that of the Frobenius norm.

We form the matrix Gm by picking out the mth column from each of the matrices in the set

{Gk} and stacking them, Gm := [G0,m,G1,m, · · · ,GK−1,m]. Then the G-minimization problem
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decomposes into the subproblems

minimize ψm(Gm) :=
K−1∑
k=0

γ card
(
‖Gk,m‖2

)
+

K−1∑
k=0

ρ

2
‖Gk,m − Sk,m‖2

2

subject to
K−1∑
k=0

card
(
‖Gk,m‖2

)
≤ η,

(4.23)

which can be solved separately for m = 1, 2, . . . ,M .

To solve problem (4.23) we rewrite the feasible setF of (4.23), F =
{
Gm :

∑K−1
k=0 card

(
‖Gk,m‖2

)
≤

η
}
, as the union F = F0 ∪ F1 ∪ · · · ∪ Fη of the smaller sets Fq, q = 0, . . . , η,

Fq =
{
Gm :

K−1∑
k=0

card
(
‖Gk,m‖2

)
= q
}
.

Let Gq
m denote a solution of

minimize ψm(Gm)

subject to Gm ∈ Fq.
(4.24)

Then a minimizer of (4.23) can be obtained by comparing ψm(Gq
m) for q = 0, . . . , η and choosing

the one with the least value. The above procedure, together with finding the solution of (4.24), is

made precise by the following proposition.

Proposition 4.3. The solution of (4.23) is obtained by solving the sequence of minimization prob-

lems (4.24) for q = 0, 1, . . . ,min{η, κ}, κ =
∑K−1

k=0 card
(
‖Sk,m‖2

)
. Furthermore, the solution of

(4.24) is given by

Gk,m =


Sk,m ||Sk,m||2 ≥ ||[Sm]q||2 and q 6= 0,

0 otherwise,

for k = 0, 1, · · · , K − 1, where Sk := Li+1
k + (1/ρ)Λi

k, Sm := [S0,m, · · · ,SK−1,m], [Sm]q denotes

the qth largest column of Sm in the 2-norm sense, and Gk,m, Sk,m denote the mth columns of Gk,

Sk, respectively.
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Proof: See Appendix A.6. �

We note that problem (4.23) can be solved via a sequence of equality constrained problems

(4.24) whose analytical solution is determined by Proposition 4.3. However, instead of solving

min{η, κ}+ 1 equality constrained problems, it is shown in Proposition 4.4 that the solution of the

G-minimization problem (4.23) is determined by the magnitude of the sparsity-promoting param-

eter γ.

Proposition 4.4. The solution Gm of (4.23) is determined by solving one subproblem (4.24) based

on the value of γ,

Gm =



G0
m

ρ
2
‖[Sm]1‖2

2<γ

G1
m

ρ
2
‖[Sm]2‖2

2< γ ≤ ρ
2
‖[Sm]1‖2

2

...
...

Gmin{η,κ}
m γ≤ ρ

2
‖[Sm]min{η,κ}‖2

2

(4.25)

where Gq
m denotes a solution of (4.24) with q = 0, 1, . . . ,min{η, κ}, and κ and [Sm]q are defined

as in Proposition 4.3.

Proof: See Appendix A.7. �

It is clear from Proposition 4.4 that the parameter γ governs the column-sparsity of Gm. For

example, Gm becomes the zero matrix as γ → ∞, which corresponds to the scenario in which all

sensors are always inactive.

To reiterate, in order to solve theG-minimization problem (4.15), we first decompose it into the

M subproblems (4.23) with separate optimization variables {Gm}m=1,...,M . Each inequality con-

strained subproblem (4.23) is then solved via Proposition 4.4, in which the solution of the equality

constrained problem (4.24) is determined by Proposition 4.3. We summarize this procedure in

Algorithm 4.3.
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Algorithm 4.3 G-minimization step (4.15)

1: Given η and Sk = Li+1
k + 1/ρΛi

k, set κ =
∑K−1

k=0 card
(
‖Sk,m‖2

)
.

2: for m = 1, . . . ,M do
3: Set Sm = [S0,m, · · · ,SK−1,m].
4: Solve (4.23) using Prop. 4.4 to obtain Gm = Gq

m, where Gq
m is determined from Prop. 4.3.

5: end for
6: Use {Gm}m=1,...,M to construct {Gk}k=0,1,...,K−1.

Convergence & Initialization of ADMM-based periodic sensor schedul-

ing

The solution of ADMM for a nonconvex problem generally yields a locally optimal point, and

in general depends on the parameter ρ and the initial values of {Lk} and {Gk} [82]. In fact for

a nonconvex problem, such as the one considered here, even the convergence of ADMM is not

guaranteed [82]. Our numerical experiments and those in other works such as [81] demonstrate

that ADMM indeed works well when the value of ρ is chosen to be large. However, very large

values of ρ make the Frobenius norm dominate the augmented Lagrangian (4.13) and thus lead

to less emphasis on minimizing the estimation error. In order to select an appropriate value of ρ,

certain extensions (e.g., varying penalty parameter) of the classical ADMM algorithm have been

explored. The reader is referred to [82, Sec. 3].

To initialize the estimator gain {Lk}, we start with a feasible initializing sensor schedule. Such

a schedule can be expressed in terms of the observation matrices over one period, namely, C(k) =

[ζk,1C1, . . . , ζk,MCM ]T for k = 0, 1, . . . , K − 1, where the binary variable ζk,m indicates whether

or not the mth sensor is active at time k. Note that the periodic sensor schedule {C(k)} uniquely

determines the limit cycle of the periodic error covariance matrix [24]. We express the periodic

sensor schedule {C(k)} in cyclic form C0 := T diag{C(k)} and solve the following algebraic

Riccati equation for the cyclic form of {Pk}

P = Q + APAT −APC0T (C0PC0T + R)−1C0PA−1, (4.26)
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where P , Q, A and R have the same definitions as in Sec. 4.4. The Riccati equation (4.26) gives

the optimal periodic estimator gain corresponding to a discrete-time system with given periodic

observation matrices {C(k)}. Once the solution of (4.26) is found, the corresponding estimator

gain in cyclic form is given by [80]

L0 = APC0T (C0PC0T + R)−1T 0, (4.27)

where T 0 has the same block-cyclic form of T but is instead formed usingM×M identity matrices.

It is not difficult to show that the matrix L0 in (4.27) has the same sparsity pattern as C0. Thus,

the sequence {L0
k} obtained from L0 respects the energy constraints and can be used to initialize

ADMM. Furthermore, we assume that (C0,A) is observable, which guarantees that the spectrum

of A −L0C0 is contained inside the open unit disk and thus the initializing estimator gains {L0
k}

will be stabilizing. Finally, for simplicity {Gk} is initialized to Gk = 0, k = 0, 1, . . . , K − 1.

Complexity analysis

It has been shown that ADMM typically takes a few tens of iterations to converge with mod-

est accuracy for many applications [39, 81–83, 87]. The computational complexity of each iter-

ation of ADMM is dominated by the L-minimization step, since the analytical solution of the

G-minimization step can be directly obtained and the dual update is calculated by matrix addition.

For the L-minimization subproblem, the descent Anderson-Moore method requires the solutions

of two Lyapunov equations (4.18)-(4.19) and one Sylvester equation (4.20) at each iteration. To

solve them, the Bartels-Stewart method [88] yields the complexityO(K3N3+K3M3+K3MN2+

K3NM2), whereK is the length of the period, M is the number of sensors andN is the dimension

of the state vector. We also note that the convergence of the Anderson-Moore method is guaranteed

by Prop. 4.2, and it typically requires a small number of iterations because of the implementation

of the Armijo rule.

For additional perspective, we compare the computational complexity of our proposed method-
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ology to a periodic sensor scheduling problem that is solved by semidefinite programming (SDP),

for example as done in [22]. The complexity of SDP is approximated by O(a2b2.5 + ab3.5) [62],

where a and b denote the number of optimization variables and the size of the semidefinite matrix,

respectively. For the linear matrix inequality (LMI) problem proposed in [22], the computation

complexity is determined by a = N(N + 1)/2 + M and b = (K + 1)N + M . Thus, prob-

lems involving large-scale dynamical system with many state variables, result in large SDPs with

computation complexity O(N6.5). It can be seen that our approach reduces the computational

complexity by a factor of N3.5 compared to the LMI-based method of [22].

4.5 Numerical results

To demonstrate the effectiveness of our proposed periodic sensor scheduling algorithm, we con-

sider the example of field monitoring in Fig. 4.1.
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Fig. 4.1: M = 10 sensors deployed in a 6× 6 region.

We assume that sensors are deployed on a rectangular region to estimate the state of a diffusion
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process described by the partial differential equation [7, 18]

∂ξ(s, t)

∂t
= ∇2ξ(s, t) (4.28a)

with Dirichlet boundary conditions

ξ(s, · ) = 0 s ∈ ∂D (4.28b)

where ξ(s, t) denotes the field (or state) value at location s and time t, ∇2 denotes the Laplace

operator, and ∂D denotes the boundary of a rectangular region of interest D.

We consider a spatially-discretized approximation of (4.28) and our aim is to estimate the state

over the entire discrete lattice using a small number of sensors. With an abuse of notation, a simple

discrete approximation of (4.28) can be generated by setting [18]

∇2ξ(s, t)
∣∣
s=(i,j)

≈ ξ(i+ 1, j, t)− 2ξ(i, j, t) + ξ(i− 1, j, t)

h2

+
ξ(i, j + 1, t)− 2ξ(i, j, t) + ξ(i, j − 1, t)

h2
, (4.29)

for i = 0, 1, . . . , `h and j = 0, 1, . . . , `v, where `h + 2 and `v + 2 are the width and length of

a rectangular region, respectively In (4.29), h denotes the physical distance between the lattice

points, and ξ(−1, j, t) = ξ(`h + 1, j, t) = ξ(i,−1, t) = ξ(i, `v + 1, t) = 0 for all indices i, j and

time t.

From (4.28) and (4.29), we can obtain the evolution equations d
dt

x(t) = A∆x(t), where x(t) ∈

RN , N = (`h+ 1)×(`v + 1), denotes the state vector x(t) = [ξ(0, 0, t), ξ(0, 1, t), . . . , ξ(`h, `v, t)]
T ,

and A∆ can be directly computed from (4.29). Finally, applying a discretization in time and

introducing process noise (i.e., a spatio-temporal random field) into the evolution yields

xk+1 = Axk + wk.

Here, xk is the state vector, wk is a white Gaussian process with zero mean and covariance matrix
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Q, A is the system transition matrix A = eA∆T , and T is the temporal sampling interval.

We assume that M sensors, M < N , are deployed and make measurements according to

yk = Cxk + vk,

where yk ∈ RM is the measurement vector, vk denotes the measurement noise which is a white

Gaussian process with zero mean and covariance matrix R, and C is the M ×N observation

matrix. For example, the case where the mth row of C contains only one nonzero entry equal to 1

corresponds to the scenario in which the mth entry of yk represents measurements of the field at

the location of the mth sensor.

We consider an instance in which M = 10 sensors are deployed to monitor N = 25 field

points. We assume that each sensor can be selected at most η times, η ∈ {1, . . . , 10}, during

any period of length K = 10. Furthermore, we select T = 0.5, Q = 0.25 I, and R = I. The

ADMM stopping tolerance is ε = 10−3. In our computations, ADMM converges for ρ ≥ 10 and

the required number of iterations is around 50.

In Fig. 4.2, for our approach we present the estimation performance, namely the cumulative

traces of error covariance matrices over one period, respectively as a function of the cumulative

column-cardinality of {Lk} shown by (4.10) and the measurement frequency bound η. In the

left plot, we fix η = 5 and vary γ, which results in changes in the column-cardinality of {Lk}

and renders the trade-off curve between the conflicting objectives of good estimation performance

and minimal sensor usage. Numerical results demonstrate that as the column-cardinality of {Lk}

increases and more sensors are activated, the estimation performance improves. In the right plot,

we observe that the estimation performance is improved by increasing η. This is not surprising, as

a larger value of η allows the (most informative) sensors to be active more frequently.

In Fig. 4.3, we compare the estimation performance of our approach to that of random schedul-

ing, where the latter method refers to randomly selected sensor schedules that satisfy the measure-

ment frequency constraint and have the same total number of active sensors over one period as the



68

0 20 40 60
86

87

88

89

90

91

92

Column Cardinality of {Lk}

T
ra

ce
 o

f E
st

im
at

io
n 

E
rr

or
 C

ov
ar

ia
nc

e

 

 

0 5 10
82

83

84

85

86

87

88

89

90

91

92

Measurement Frequency Bound η

 

 
η = 5 γ = 0

Fig. 4.2: Estimation performance. Left plot: Tradeoff between estimation performance and
total number of sensors (in terms of column-cardinality of {Lk}) for a fixed η = 5; Right plot:
Estimation performance as a function of measurement frequency bound η.

schedule obtained from our approach. The performance of the random strategy is taken to be the

average of the traces of error covariance matrices over 500 simulation trials. Here the estimation

performance is presented as a function of the measurement frequency bound η for three different

values of the sparsity-promoting parameter γ = 0, 0.1, 0.15. Numerical results show that our ap-

proach significantly outperforms the random strategy for γ = 0.1, 0.15, as the former approach

takes into account sensor activations over both time and space. For γ = 0 there is no penalty on

sensor activations, and to achieve the best estimation performance every sensor is active η times

per period (i.e., all sensors attain their measurement frequency bound). As a consequence, the

performance gap between our approach and that of the random strategy is not as large for γ = 0 as

it is for γ > 0. In our numerical experiments for smaller versions of this example, where exhaus-

tive searches are feasible, we observed that our proposed method yields sensor schedules that are

identical or close in performance to the globally optimal schedule found via an exhaustive search.

In Fig. 4.4, we compare the performance of our proposed sensor scheduling approach and the

periodic switching policy of [37], where M = 4 and Q = 0.25I. In Fig. 4.4-(a), each plot rep-
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Fig. 4.3: Performance comparison of random schedules versus our proposed schedule.

resents the gap between the approach being considered and the globally optimal sensor schedule

for different values of the sampling interval T , where K = 4, and T denotes the sampling time

used to discretize the continuous-time system in (4.28). Since K is the period in discrete time,

the period length in continuous time is given by ε = KT . Simulation results show that both of

the sensor scheduling methods achieve the performance of the globally optimal sensor schedule as

T → 0. This is due to the fact that ε→ 0 while T → 0. And it has been shown in [37] that the best

estimation performance is attained by using a periodic switching policy as ε→ 0 (and thus sensors

are switched as fast as possible). However, as T increases, our approach outperforms the periodic

switching policy significantly, which indicates that the sensor schedules obtained from the method

of [37] are inappropriate for scheduling sensors for discrete-time systems with moderate sampling

rates.

In Fig. 4.4-(b), we use the periodic switching policy of [37] to obtain the optimal sensor sched-

ule and compare its performance with our approach for the fixed sampling interval T = 0.5 and

different values of K. Fig. 4.4-(b) demonstrates that the periodic switching policy of [37] loses

optimality as K increases. This is not surprising, since the optimality of the periodic switching
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Fig. 4.4: Performance comparison with the periodic switching policy: a) Performance gaps
of the periodic switching policy and our approach with respect to the optimal schedule; b)
Performance comparison between our approach and the periodic switching policy for different
values of period lengths.

policy is only guaranteed as the period length goes to zero. Therefore, to schedule sensors on a

discrete-time system with a moderate sampling interval, such as T = 0.5 in the present example,

our approach achieves better estimation performance than the periodic switching policy of [37].

In Fig. 4.5, we use ADMM to obtain the sensor schedule over a time period of length K = 10

for γ ∈ {0, 0.1, 0.15} and η ∈ {1, 5, 8}; the subplots represent increasing values of γ from left to

right and increasing values of η from top to bottom. In each subplot, the horizontal axis represents

discrete time, the vertical axis represents sensor indices, and circles represent activated sensors.

We also observe that sensors selected at two consecutive time instances tend to be spatially distant

from each other. For example, at time instants t = 1, 2, 3, the active sensors are 6, 9, 4, respectively.

In Figs. 4.5-(I-a), (I-b), and (I-c), we assume η = 1 and vary the magnitude of the sparsity-

promoting parameter γ. As seen in Fig. 4.5-(I-a), for γ = 0 every sensor is selected exactly once

over K = 10 time steps. Figs. 4.5-(I-b) and (I-c) demonstrate that fewer sensors are selected as γ

is further increased. This is to be expected, as the value of γ in (4.9) determines our emphasis on

the column-cardinality of {Lk}.

In Figs. 4.5-(I-c), (II-c), and (III-c) for γ = 0.15 we compare the optimal time-periodic sched-
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ules for different values of the frequency bound η = 1, 5, 8. Numerical results show that for

γ = 0.15 the 6th and 7th sensor are selected. To justify this selection, we note that these two

sensors are located close to the center of the spatial region D; see Fig. 4.1. Although we con-

sider excitations that are in the form of a Gaussian random field, the states at the boundary ∂D

are forced to take the value zero and the states closest to the center of D are subject to the largest

uncertainty. Therefore, from the perspective of entropy, the measurements taken from the sensors

6 and 7 are the most informative for the purpose of field estimation. As we increase η, we allow

such informative sensors to be active more frequently.

Moreover, the sensor schedule in Fig. 4.5-(II-c) verifies the optimality of the uniform staggered

sensing schedule for two sensors, a sensing strategy whose optimality was proven in [38] and [21,

Proposition 5.2]. In addition, although the periodicity of the sensor schedule was a priori fixed at

the value K = 10, as η increases numerical results demonstrate repetitive patterns in the optimal

sensor schedule. As seen in Figs. 4.5-(II-c) and (III-c), for η = 5 and η = 8 the sensor schedule

repeats itself five times over 10 time steps and two times over 10 time steps, respectively. This

indicates that the value of the sensing period K can be made smaller than 10.

4.6 Summary

In this chapter, we designed the optimal periodic sensor schedule for linear dynamical systems.

In order to strike a balance between estimation accuracy and the number of sensor activations,

the optimization problem was formulated to minimize the trace of the estimation error covariance

matrices while penalizing the number of nonzero columns of the estimator gains. Through the ap-

plication of ADMM, we split the optimization problem into subproblems that can either be solved

efficiently using iterative numerical methods or solved analytically to obtain exact solutions. We

showed that our approach outperforms previously available periodic sensor scheduling algorithms.

In the next chapter, to account for the individual power constraint of each sensor, we will general-

ize the sparsity-promoting optimization framework by introducing a new sparsity-inducing penalty
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function to avoid scenarios in which the same sensors are successively selected.
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Fig. 4.5: I- Sensor scheduling schemes with measurement frequency bound η = 1: (I-a)
γ = 0, (I-b) γ = 0.1, (I-c) γ = 0.15. II- Sensor scheduling schemes with measurement
frequency bound η = 5: (II-a) γ = 0, (II-b) γ = 0.1, (II-c) γ = 0.15. III- Sensor scheduling
schemes with measurement frequency bound η = 8: (III-a) γ = 0, (III-b) γ = 0.1, (III-c)
γ = 0.15.
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CHAPTER 5

ENERGY-AWARE SPARSE SENSOR

MANAGEMENT

5.1 Introduction

Promoting sparsity in sensor management may lead to scenarios in which a fixed set of sensors,

which we hereafter refer to as the most ‘informative sensors’, are successively selected, e.g., due

to their larger mutual information with the target [41] or stronger correlation with the field point of

interest [42]. This behavior would result in faster energy depletion of the most informative sensors.

From the perspective of network life time [43], the death of a sensor (or a percentage of sensors)

can make the network nonfunctional. Therefore, it is desired to have a balanced use of sensors

while discouraging the excessive use of any group of sensors in the network.

In this chapter, we propose a new sparsity-promoting penalty function, which penalizes suc-

cessive selection of the same group of sensors. This framework generates sparse sensor schedules

which achieve a trade-off between activating the most informative sensors and balancing the energy

consumption in the network. The remainder of the chapter is organized as follows. In Section 5.2,

we motivate the importance of sensor scheduling from an energy balance point of view. In Sec-

tion 5.3, we present a quadratic function, with respect to the number of times that each sensor is
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selected over a time horizon, to penalize the overuse of the same group of sensors. In Section 5.4,

we solve an `2-norm optimization problem to find sparse sensor schedules in an energy-balanced

manner. In Section 5.5, a reweighted `1 norm is used to characterize the sparsity. In Section 5.6, we

provide numerical results and comparison with other sensor scheduling algorithms in the literature

to demonstrate the effectiveness of our approach. We summarize our work in Section 5.7.

5.2 Motivation

Consider a generic system where multiple sensors are deployed to monitor a spatio-temporally

correlated random field. Measurements from these multiple sensors at different time instants are

used to estimate the field intensity at an unobserved location over multiple time steps. Let x(s, t)

denote the field intensity at location s and time instant t, and with mean µ and variance σ2. The

vector of field intensities to be estimated is given by

x = [x(ς, τ1), x(ς, τ2), . . . , x(ς, τN)]T , (5.1)

where ς is the location where the field intensity is to be estimated at time instants {τn}n=1,2,...,N .

The measurement of the mth sensor at the sampling time tk, denoted by yk+(m−1)K , is given by

yk+(m−1)K = x(sm, tk) + vk+(m−1)K , k = 1, 2, . . . , K, m = 1, 2, . . . ,M, (5.2)

where K is the number of samples per sensor, M is the number of sensors, sm denotes the location

of the mth sensor, and vk+(m−1)K is a zero-mean Gaussian noise with variance σ2
v .

Based on sensor measurements, we employ the LMMSE to estimate x

x̂ = Wy + a =
M∑
m=1

K∑
k=1

yk+(m−1)Kwk+(m−1)K + a, (5.3)

where W ∈ RN×KM is an unknown coefficient matrix determined by the minimum mean square
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error criterion, a = µ(I −W)1 to ensure unbiasedness, y = [y1, y2, . . . , yKM ]T , and wk+(m−1)K

denotes the jth column of W.

It is clear from (5.3) that the non-zero columns of W characterize the selected sensor measure-

ments. For example, if only the ith sensor reports measurement at time tj . It follows from (5.3)

that Wy = yj+(i−1)Kwj+(i−1)K . To seek an optimal tradeoff between estimation accuracy and

sensor activations, a sparsity-promoting optimization problem has been proposed in [16, 40, 89]

minimize
w

J(w) + γh(w), (5.4)

where w is the columnwise vector of W, J(w) denotes the estimation distortion with respect to

the columnwise vector of W, which is commonly given by a convex quadratic function for proper

coefficients [90, Sec. II & Lemma 1]

J(w) = (1/2)wTPw + qTw, (5.5)

and h(w) gives the number of nonzero columns of W

h(w) =
M∑
m=1

K∑
k=1

‖‖wk,m‖p‖0. (5.6)

Here for notational simplicity, we replace wk+(m−1)K with wk,m, ‖x‖0 = 1 if x 6= 0, and ‖x‖0 = 0

if x = 0, and typically p = 1 or 2. In problem (5.4), γ ∈ R+ is a sparsity-promoting parameter

since sparser sensor schedules can be achieved by making γ larger. As will be evident later, our

framework can be viewed as a generalization of (5.4).

The total number of selected sensors in the solution of problem (5.4) decreases when γ in-

creases, thereby promoting sparsity in sensor activations. However, there exist scenarios in which

a fixed subset of sensors (the most informative ones) will be successively selected, and thus result

in unbalanced energy usage among sensors. We demonstrate this phenomenon in Fig. 5.1 (details

provided in Section 5.6). As we can see, for γ = 0.1 all the sensors are selected over all the ten
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Fig. 5.1: Sensor schedules obtained by the conventional sparsity-promoting sensor manage-
ment for different values of γ.

time steps while for γ = 8 only sensor 2 and sensor 3 are activated. The successive use of sensor

2 and sensor 3 leads to an unbalanced energy usage over the entire network. In what follows, we

will present a new sparsity-promoting framework that achieves a balance between activating the

most informative sensors and uniformly allocating sensor energy over the entire network.

5.3 Energy-aware sparsity-promoting regularization

In this section, we introduce a quadratic function, with respect to the number of times that each

sensor is selected over a time horizon, to penalize the overuse of the same group of sensors. After

relaxing the `0 norm, we propose a convex optimization problem to find sparse sensor schedules in

an energy-balanced manner.

Consider a new sparsity-promoting function which characterizes the ‘cost’ of each sensor being
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repeatedly selected,

g(w) =
M∑
m=1

κ2
m, κm =

K∑
k=1

‖‖wk,m‖p‖0 (5.7)

where the quantity κm is the number of times the mth sensor is selected over K time steps. The

rationale behind using a quadratic function κ2
m is its relatively fast growth as a function of κm.

Consider a system with M = 2 sensors. It is clear from (5.7) that the penalty value of using the

first sensor 4 times and the second sensor 0 times (42 + 02 = 16 units) is greater than the penalty

of using each sensor 2 times (22 + 22 = 8 units).

Based on (5.7), we modify the formulation (5.4) by penalizing successive selections of sensors,

minimize
w

J(w) + γh(w) + ηg(w), (5.8)

where γ ∈ R+ and η ∈ R+ are regularization parameters. In problem (5.8), sparser sensor sched-

ules can be achieved by making either γ or η larger. For large γ, the resulting sparse sensor schedule

may contain less total number of active sensors, but some sensors will be selected more frequently.

Conversely, the sparse sensor schedule resulting from large η may include more number of total

active sensors, but the set of selected sensors is more diverse, which leads to the balanced usage of

sensor energy in the network. When η = 0, problem (5.8) reduces to problem (5.4).

Problem (5.8) is not convex due to the presence of the `0 norm. For tractability, we relax the `0

norm to an `1 norm [91],

minimize
w

J(w) + γ

M∑
m=1

K∑
k=1

‖wk,m‖p + η

M∑
m=1

(
K∑
k=1

‖wk,m‖p

)2

. (5.9)

where different choices of `p norm will lead to different approximations of problem (5.8).
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5.4 `2 optimization: convexity and solution

In problem (5.9) with p = 2, an `2 norm is used to characterize the column-sparsity of W,

minimize
w

J(w) + γ
M∑
m=1

K∑
k=1

‖wk,m‖2 + η
M∑
m=1

(
K∑
k=1

‖wk,m‖2

)2

, (5.10)

where the use of `2 norm is well motivated by the problem of group Lasso [92].

We begin by showing the convexity of problem (5.10) in Proposition 5.1.

Proposition 5.1. Problem (5.10) is a convex optimization problem.

Proof: see Appendix A.8. �

Next, we develop an ADMM-based algorithm to find the optimal solution of the convex opti-

mization problem (5.10). The major advantage of ADMM is that it allows us to split the optimiza-

tion problem (5.10) into a sequence of subproblems, each of which can be solved analytically. We

will elaborate on ADMM in the following.

We begin by reformulating the optimization problem (5.10) in a way that lends itself to the

application of ADMM,

minimize
w,v,u

J(w) + γ
M∑
m=1

K∑
k=1

hk,m(v) + η
M∑
m=1

gm(u)

subject to w = v, w = u.

(5.11)

where hk,m(v) := ‖vk,m‖2, and gm(u) :=
(∑K

k=1 ‖uk,m‖2

)2

. The augmented Lagrangian of

(5.11) is given by

L(w,v,u,µ, ξ) = J(w) + γ

M∑
m=1

K∑
k=1

hk,m(v) + η

M∑
m=1

gm(u) + µT (w − v) + ηT (w − u)

+
ρ

2
‖w − v‖2

2 +
ρ

2
‖w − u‖2

2, (5.12)

where µ and ξ are Lagrangian multipliers, and ρ ∈ R+ is a penalty weight.
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The ADMM algorithm iteratively executes the following steps [82] for iteration l = 1, 2, . . .

wl+1 = arg min
w

{
J(w) +

ρ

2
‖w − al1‖2

2 +
ρ

2
‖w − al2‖2

2

}
(5.13)

vl+1 = arg min
v

{
γ
M∑
m=1

K∑
k=1

hk,m(v) +
ρ

2
‖v − bl‖2

2

}
(5.14)

ul+1 = arg min
v

{
η
M∑
m=1

gm(u) +
ρ

2
‖u− cl‖2

2

}
, (5.15)

µl+1 = µl + ρ(wl+1− vl+1), ξl+1 = ξl + ρ(wl+1− ul+1), (5.16)

where al1 = vl − 1
ρ
µl, al2 = vl − 1

ρ
ξl, bl = wl+1 + 1

ρ
µl, and cl = wl+1 + 1

ρ
ξt. The ADMM

algorithm terminates until

‖wl+1 − vl+1‖2
2 + ‖wl+1 − ul+1‖2

2 ≤ ε, ‖vl+1 − vl‖2
2 + ‖ul+1 − ul‖2

2 ≤ ε,

where ε is a stopping tolerance. In what follows, we will derive the analytical solutions of ‘w-

minimization’ problem (5.13), ‘v-minimization’ problem (5.14), and ‘u-minimization’ problem

(5.15).

w-minimization

Completing squares with respect to w in (5.12), the w-minimization problem (5.13) is given by an

unconstrained quadratic program (UQP)

minimize
w

1

2
wT (P + 2ρI)w − (ρa1 + ρa2 − q)Tw, (5.17)

where J(w) is given by (5.5), and for simplicity, we have omitted the ADMM iteration index l.

The minimizer of problem (5.13) is given by w = (P + 2ρI)−1(ρa1 + ρa2 − q).
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v-minimization

Completing squares with respect to v in (5.12), the v-minimization problem (5.14) becomes

minimize
v

M∑
m=1

K∑
k=1

‖vk,m‖2 +
1

2γ̂
‖v − bl‖2

2,

where γ̂ = γ/ρ. The solution of problem (5.14) is then given by a block soft thresholding operator

[93]

vl+1
k,m =

 (1 + γ̂
‖blk,m‖2

)blk,m ‖blk,m‖2 ≥ γ̂

0 otherwise
(5.18)

for k = 1, 2, . . . , K and m = 1, 2, . . . ,M , where blk,m is the (k +mK −K)th subvector of bl.

u-minimization

Completing squares with respect to u in (5.12), the u-minimization problem (5.15) is

minimize
u

η
M∑
m=1

(
K∑
k=1

‖uk,m‖2

)2

+
ρ

2
‖u− cl‖2

2, (5.19)

which can be decomposed into M subproblems

minimize
{uk,m}k=1,2,...,K

(
K∑
k=1

‖uk,m‖2

)2

+
1

2η̂

K∑
k=1

‖uk,m − ck,m‖2
2 (5.20)

for m = 1, 2, . . . ,M , where η̂ = η/ρ, and we use ck,m instead of clk,m for ease of notation. The

quadratic function with respect to the sum of `2 norms makes finding the minimizer of problem

(5.20) more challenging, since it is a nonlinear composition of nonsmooth functions. However,

Proposition 5.2 will demonstrate that the solution of (5.20) is achievable via quadratic program-

ming (QP).
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Proposition 5.2. The minimizer of problem (5.20) is given by

u∗k,m = r∗k
cTk,m
‖cTk,m‖2

, k = 1, 2, . . . , K. (5.21)

In (5.23), r∗ := [r∗1, r
∗
2, . . . , r

∗
K ]T is the minimizer of QP

minimize
r

rT11T r + 1
2η̂
‖r− f‖2

2,

subject to r ≥ 0,
(5.22)

where f = [‖cT1,m‖2, ‖cT2,m‖2, . . . , ‖cTK,m‖2]T .

Proof: See Appendix A.9. �

Proposition 5.2 indicates that the solution of the u-minimization problem can be found through

M QPs, each of which has complexity O(K3.5) [62]. However, instead of using QP, we will show

that the analytical solution of (5.22) is also tractable. We first present an important feature of

problem (5.22) in Proposition 5.3.

Proposition 5.3. If the entries of f satisfy f1 ≤ f2 ≤ . . . ≤ fK , then the solution of (5.22) yields

r∗1 ≤ r∗2 ≤ . . . ≤ r∗K .

Proof: The proof is straightforward, proceeding by contradiction. �

The rationale behind Proposition 5.3 is that the analytical solution of problem (5.22) is tractable

by sorting f in an ascending order. Let I denote the index set that describes the rearrangement of

{fi}i=1,2,...,K in an ascending order. And let r∗I be the solution of (5.22) rearranged by I. For

instance, if f = [5, 4]T , then I = {2, 1} and r∗I = [r∗2, r
∗
1]T . The closed-form of r∗I is given in

Proposition 5.4. Together with I, we then obtain the solution of (5.22).

Proposition 5.4. The minimizer of problem (5.22), with an index rearrangement I, is given by

r∗I,i =


0 1 ≤ i ≤ ι− 1, i ∈ N

fi −
2η̂
∑K

k=ι fk
1 + 2η̂(K − ι+ 1)

ι ≤ i ≤ K, i ∈ N,
(5.23)
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for i = 1, 2, . . . , K, where I is the index set that describes the rearrangement of {fi}i=1,2,...,K in

an ascending order, fi is the ith entry of f given in (5.22), ι is the index of the first positive element

in the set of numbers
{
fi − 2η̂

∑K
k=i fk

1+2η̂(K−i+1)

}
i=1,2,...,K

and ι = K + 1 if no positive element exists.

Proof: See Appendix A.10. �

According to Proposition 5.4, the complexity of solving problem (5.22) is given byO(K logK)

owing to the sorting of the entries of f in an ascending order. This is much lower than the com-

plexity of QP with O(K3.5). Combining (5.17), (5.18) and (5.23), the ADMM algorithm follows

from steps (5.14)–(5.16), each of which yields the analytical solution.

5.5 Weighted `1 optimization: convexity and solution

In problem (5.9) with p = 1, we use a reweighted `1 minimization method to relax the `0 norm,

minimize
w

1

2
J(w) + γ

M∑
m=1

K∑
k=1

αk,m‖wk,m‖1 + η
M∑
m=1

(
K∑
k=1

αk,m‖wk,m‖1

)2

, (5.24)

where we denote its solution by {w∗k,m} for k = 1, 2, . . . , K and m = 1, 2, . . . ,M . Based on

{w∗k,m}, the weights {αk,m} with respect to optimization variables wk,m are updated as αk,m ←

1/(‖w∗k,m‖1 +κ) for the next iteration, where the parameter κ > 0 is a small number to ensure that

the denominator does not become zero.

Proposition 5.5 shows that problem (5.24) can be solved by transformation to an QP.

Proposition 5.5. The optimal solution of problem (5.24) can be obtained by solving an equivalent

problem

minimize
w,u

1

2
J(w) + γ

M∑
m=1

K∑
k=1

αk,m1Tuk,m + η
M∑
m=1

(
K∑
k=1

αk,m1Tuk,m

)2

,

subject to −uk,m ≤ wk,m ≤ uk,m, k = 1, 2, . . . , K, m = 1, 2, . . . ,M,

(5.25)

where uk,m ∈ RN is a vector of introduced auxiliary variables, and the inequality is defined in
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element-wise fashion.

Proof: See Appendix A.11. �

We further rewrite problem (5.25) as

minimize
w,u

(1/2)wTPw + qTw + γuT r + ηuTRu

subject to −u ≤ w ≤ u,

(5.26)

where r := [αT1 ,α
T
2 , . . . ,α

T
M ]T , αm := [α1,m1T , α2,m1T , . . . , αK,m1T ]T for m = 1, 2, . . . ,M ,

and R is a block diagonal matrix formed by {αmαTm}m=1,2,...,M .

Let z := C[wT ,uT ]T , problem (5.26) simplifies to

minimize
z

(1/2)zTHz− zTh

subject to z ≤ 0,
(5.27)

where C = [I,−I;−I,−I], A := [I,0], B := [0, I], H := (AC−1)TPAC−1+2η(BC−1)TRBC−1,

and h := −(AC−1)Tq− γ(BC−1)T r.

Problem (5.27) is a convex QP. Convexity holds since P and R are positive semidefinite. To

solve such an QP, the complexity of using standard solvers such as CVX [94] is roughly O(L3)

per Newton iteration [62], where L denotes the dimension of the optimization variable z. Instead

of using an QP solver, we employ an accelerated proximal gradient method, which yields much

lower computational complexity per iteration.

We express problem (5.27) as

minimize
z

φ(z) + ψ(z), (5.28)

where φ(z) := 1
2
zTHz − zTh, and ψ(z) is an indicator function with respect to the convex set

{z | z ≤ 0}

Problems in the form of (5.28) whose objective function consists of a differentiable convex

function φ and a nonsmooth convex function ψ can be efficiently solved via the accelerated prox-
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imal gradient method (APGM) [93]. The advantage of APGM is its low complexity at each itera-

tion. We summarize APGM in Algorithm 5.1.

Algorithm 5.1 APGM-based algorithm for solving (5.28)

Require: Given z−1 = z0, λ0, % = 0.5 and εprox > 0.
1: for i = 1, 2, . . . do
2: Let λ := λi−1 and si := zi + i

i+3
(zi − zi−1).

3: repeat
4: χ := proxλψ (si − λ∇φ(si)) = (si − λ∇φ(si))−.
5: until if φ(χ) ≤ φ̂λ,zi(χ) where φ̂λ,zi(χ) is given by (5.30); else λ = %λ, go to step 3.
6: Let λi := λ and zi+1 := χ.
7: until ‖φ(zi+1)− φ(zi)‖ < εprox.
8: end for

In Step 4, the proximal operator proxλψ(·) of ψ with parameter λ is given by

proxλψ(·) = arg min
z

(
ψ(z) +

1

2λ
‖z− ·‖2

2

)
. (5.29)

By recalling the definition of ψ(z), the proximal operator (5.29) precisely defines a Euclidean

projection onto the halfspace {z|z ≤ 0}. Namely, proxλψ(·) = (·)−, where (z)− takes non-

positive elements of a vector z and sets 0 for its positive elements. In Step 5, the function φ̂λ,zi(χ)

is defined by

φ̂λ,zi(χ) := φ(zi) +∇φ(zi)T (χ− zi) +
1

2λ
‖χ− zi‖2, (5.30)

where ∇φ(zi) = H̃zi − h̃. In (5.30), φ̂λ,zi(χ) can be interpreted as a quadratic approximation

of φ(χ) [95]. Steps 3-5 constitute a procedure of backtracking line search [59], which is used to

determine an appropriate step size λ at iteration i.

At each iteration of Algorithm 5.1, the computation cost is dominated by matrix-vector multi-

plication, which has O(L2) complexity [96]. The total number of iterations required for APGM is

approximated by O(1/
√
ε) [93]. In our implementation, it takes around 100 iterations as εprox =

10−4.
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5.6 Numerical results

We consider a sensor network with M ∈ {5, 10} sensors on a 20 × 20 grid, where each sensor

takes K = 10 measurements at the sampling time 0.2k for k = 1, 2, . . . , K. The task of the

sensor network is to reconstruct the field intensities at the coordinate ς = (10, 10) over time slots

{τn}n=1,2,...,N , where τn = 0.2n + 0.1 and N = 9. We assume that the correlation model of the

random field is given by cov(x(s, t), x(s′, t′)) = σ2exp{−cs‖s− s′‖2− ct(t− t′)2}, where σ2 = 1,

cs = 0.1, and ct = 0.1. We select the ADMM parameters as ρ = 100 and ε = 10−3.

In what follows, we define a factor to measure the energy imbalance in the usage of each sensor

due to successive selections. Let ω = [ω1, ω2, . . . , ωM ] ∈ NM denote the sensor activation scheme

of M sensors over K time steps, where ωi ∈ {0, 1, . . . , K} represents the number of times the ith

sensor is selected over K time steps, and 1Tω gives the total number of sensor activations. For

example, we consider a specific sensor schedule which satisfies ω1 ≥ ω2 ≥ . . . ≥ ωM . From the

perspective of energy balance, we expect to select sensors as uniformly as possible over K time

steps. The most balanced schedule is given by ω̄ := [ω0 + ā1, ω0 + ā2, . . . , ω0 + āM ]T , where

ω0 = b1Tω
M
c yields the maximum number of times each sensor is uniformly scheduled given the

total number of sensor activations, and

āi =

 1 if i = 1, 2, . . . , (1Tω −Mω0)

0 otherwise,

which ensures that 1T ω̄ = 1Tω. Based on ω and ω̄, we adopt the distance dim = ‖ω − ω̄‖2 to

measure the energy imbalance for the schedule ω with respect to the balanced schedule ω̄. In our

numerical examples, a normalized value of dim is used for multiple simulation trials. Specifically,

let d(n)
im denote the distance between ω(n) and ω̄(n) associated with the sensor schedule for the nth

simulation, where n ∈ {1, 2, . . . , Nsim}. We can then define an energy imbalance measure (EIM)
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as follows,

ρ
(n)
im =

d
(n)
im − d
d̄− d

∈ [0, 1], (5.31)

where d and d̄ denote the minimum and maximum value of {d(n)
im }n=1,2,...,Nsim

, respectively. Clearly,

if ρ(n)
im < ρ

(m)
im , the sensor schedule ω(n) yields a more balanced energy usage.
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Fig. 5.2: Conventional sparsity-promoting sensor management by varying γ: (a) EIM and
total number of sensor activations; (b) Sensor schedules.
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Fig. 5.3: Sparsity-promoting sensor management from an energy balanced point of view by
varying η: (a) EIM and total number of sensor activations; (b) Sensor schedules.
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In Fig. 5.2, we address the conventional sensor scheduling problem (5.4) and present the result-

ing sensor schedules for a small network with M = 5 sensors. Fig. 5.2-(a) presents EIM and the

total number of sensor activations as functions of regularization parameter γ. Here the total num-

ber of sensor activations is normalized over Nsim = 10 numerical trials, each of which yields the

solution of (5.4) for a given value of γ. We observe that when γ increases, EIM increases although

less sensors are activated. This is not surprising since sensors with strong correlation to the field

point of interest are successively selected. The specific sensor activation schemes that correspond

to the marked values of γ are shown in Fig. 5.2-(b). For an extreme case of γ = 8, only the 2nd

and 3rd sensors are used, but the 3rd sensor is activated at every time step.
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Reweighted l1 optimization: QP
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Fig. 5.4: Estimation performance comparison for different sensor scheduling algorithms.

In Fig. 5.3, we present solutions of our proposed sensor scheduling problem (5.10) for different

values of η at γ = 1. In Fig. 5.3-(a), we observe that both EIM and the number of sensor activations

decrease when η increases. This is in contrast to the result shown in Fig. 5.2, where EIM increased

when the sparsity of sensor schedules was promoted. The energy-balanced sensor schedule is

obtained since the new sparsity-promoting penalty function (5.7) enforces sensor energy to be
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consumed in a balanced way. In Fig. 5.3-(b), we present the specific sensor schedules for different

values of η. As we can see, when η becomes larger than γ, sensors are selected as uniformly

as possible. This is because a larger η places more emphasis on minimizing the new sparsity-

promoting function, which discourages the successive selection of the most informative sensors.

In Fig. 5.4, we present the mean squared error (MSE) of field estimation based on the new

formulation as a function of the number of sensor activations. In this example, we consider a

network with M = 10 sensors. For sensor scheduling, we employ three different methods: `2

optimization via ADMM with γ = 0, reweighted `1 optimization via QP with γ = 0, and the

conventional method to solve problem (5.10) with η = 0. First, we observe that when the new

penalty on energy imbalance is considered, our approach yields a higher MSE compared to the

conventional sparsity-promoting method. This is because the most informative sensors can be

successively selected when the energy-balance concern is ignored. Second, we observe that the

solution of `2 optimization problem leads to a slightly higher MSE than that of the reweighted `1

method. This is due to the fact that a better proxy of the cardinality function (i.e., the reweighted

`1 norm [97]) is used to solve the `0 optimization problem (5.8) compared to an unweighted `2

formulation.

5.7 Summary

In this chapter, a novel sparsity-promoting function was introduced to penalize successive selec-

tions of the same group of sensors. With the aid of the proposed penalty function, sensor schedul-

ing was performed in an energy-balanced manner. We demonstrated that the resulting `2 and `1

optimization problems are convex, and they can be efficiently solved via ADMM and APGM, re-

spectively. Furthermore, an energy imbalance measure was defined to illustrate the effectiveness

of our approach, and comparisons with other sensor scheduling algorithms in the literature were

provided. In the next chapter, we will take into account the cost of inter-sensor collaboration in the

design of resource management protocols.
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CHAPTER 6

SENSOR COLLABORATION FOR

ESTIMATION OF STATIC PARAMETERS

6.1 Introduction

Recently, the problem of distributed estimation with inter-sensor collaboration has attracted sig-

nificant attention, where collaboration refers to the act of sharing measurements with neighboring

sensors prior to transmission to a fusion center (FC) [9, 33, 44–46]. The presence of sensor col-

laboration smooths out the observation noise, thereby improving the quality of the signal and the

eventual estimation performance. Most literature on sensor collaboration assumed that there is no

cost associated with collaboration, the collaboration topologies are fixed and given in advance, and

the only unknowns are the collaboration weights used to combine sensor observations.

In this chapter, we present a tractable optimization framework to solve the collaboration prob-

lem with non-zero collaboration cost and unknown collaboration topologies for single-snapshot

estimation. We also incorporate energy costs associated with selected sensors while determining

the optimal subset of sensors that communicate with the FC. For the joint design of optimal sensor

collaboration and selection schemes, we describe collaboration through a collaboration matrix, and

associate (a) the cost of sensor collaboration with the number of nonzero entries of a collaboration



91

matrix (i.e., its overall sparsity), and b) the cost of sensor selection with the number of nonzero

rows of the collaboration matrix (i.e., its row-sparsity). We show that there exists a trade-off be-

tween sensor selection and sensor collaboration for a given estimation performance.

The rest of the chapter is organized as follows. In Section 6.3, we formulate the informa-

tion and energy constrained sensor collaboration problems with non-zero collaboration cost. In

Section 6.4, we develop an efficient approach to solve the information constrained collaboration

problem. In Section 6.5, we study the energy constrained collaboration problem. In Section 6.6,

we investigate the issue of joint sensor selection and collaboration. In Section 6.7, we demonstrate

the effectiveness of our proposed framework through numerical examples. Finally, in Section 6.8

we summarize our work.

6.2 Preliminaries: model for sensor collaboration

In this section, we introduce a distributed estimation system that involves inter-sensor collabora-

tion. We assume that the task of the sensor network is to estimate a random parameter θ, which has

zero mean and variance η2. In the estimation system, sensors first acquire their raw measurements

via a linear sensing model. Then, individual sensors can update their observations through spatial

collaboration, which refers to (linearly) combining observations from other sensors. The updated

measurements are transmitted through a coherent MAC. Finally, the FC determines a global esti-

mate of θ by using a linear estimator. We show the collaborative estimation system in Fig. 6.1, and

in what follows we elaborate on each of its parts.

The linear sensing model is given by

x = h̃θ + ε, (6.1)

where x = [x1, . . . , xN ]T denotes the vector of measurements from N sensors, h̃ is the vector of

observation gains with known second order statistics E[h̃] = h and cov(h̃) = Σh, and ε represents

the vector of zero-mean Gaussian noise with cov(ε) = Σε.
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Fig. 6.1: Collaborative estimation architecture showing the sensor measurements, transmitted
signals, and the received signal at FC.

The sensor collaboration process is described by

z = Wx, (6.2)

where z ∈ RN denotes the message after collaboration, and W ∈ RN×N is the collaboration matrix

that contains weights used to combine sensor measurements. In (6.2), we assume that sharing of

an observation is realized through a reliable (noiseless) communication link that consumes power

Cmn, regardless of its implementation. And the matrix C ∈ RN×N describing all the collaboration

costs among various sensors is assumed to be known in advance.

After sensor collaboration, the message z is transmitted to the FC through a coherent MAC, so

that the received signal is a coherent sum [30]

y = g̃Tz + ς, (6.3)

where g̃ is the vector of channel gains with known second order statistics E[g̃] = g and cov(g̃) =

Σg, and ς is a zero-mean Gaussian noise with variance ξ2. The transmission cost is given by the
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energy required for transmitting the message z in (6.2), namely,

TW = Eθ,h̃,ε[z
Tz] = E[xTWTWx] = tr[WΣxW

T ], (6.4)

where Σx := Eθ,h̃,ε[xxT ] = Σε + η2(hhT + Σh).

We assume that the FC knows the second-order statistics of the observation gain, informa-

tion gain, and additive noises, and that the corresponding variance and covariance matrices are

invertible. To estimate the random parameter θ, we consider the LMMSE [58]

θ̂ = aLMMSEy, (6.5)

where aLMMSE is determined by the minimum mean square error criterion. From the theory of linear

Bayesian estimators [58], we can readily obtain aLMMSE and the corresponding estimation distortion

aLMMSE = arg min
a

E[(θ − ay)2] =
E[yθ]

E[y2]
, and (6.6a)

DW = E[(θ − aLMMSEy)2] = η2 − (E[yθ])2

E[y2]
. (6.6b)

In (6.6), substituting (6.2) and (6.3), we obtain

E[y2] = E[g̃TWxxTWT g̃] + ξ2 = E[tr(g̃g̃TWxxTWT )] = tr[Σg̃WΣxW
T ], (6.7)

where Σg̃ := E[g̃g̃T ] = ggT + Σg, and Σx was defined in (6.4). Moreover, it is easy to show that

E[yθ] = η2gTWh. (6.8)

Now, the coefficient of the LMMSE aLMMSE and the corresponding estimation distortion DW are

determined according to (6.6), (6.7) and (6.8).
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We define an equivalent Fisher information JW which is monotonically related to DW,

JW :=
1

DW

− 1

η2
=

(gTWh)2

tr[Σg̃WΣxWT ]− η2(gTWh)2 + ξ2
, (6.9)

For convenience, we often express the estimation distortion (6.6b) as a function of the Fisher

information

DW :=
η2

1 + η2JW
. (6.10)

6.3 Optimal sparse sensor collaboration

In this section, we begin by making an association between the collaboration topology and the

sparsity structure of the collaboration matrix W. We then define the collaboration cost and sensor

selection cost with the help of the cardinality function (also known as the `0 norm). For simplicity

of presentation, we concatenate the entries of W into a vector, and present the main optimization

problems for sensor collaboration.

Recalling the collaboration matrix W in (6.2), we note that the nonzero entries of W cor-

respond to the active collaboration links among sensors. For example, Wmn = 0 indicates the

absence of a collaboration link from the nth sensor to the mth sensor, where Wmn is the (m,n)th

entry of W. Conversely, Wmn 6= 0 signifies that the nth sensor shares its observation with the mth

sensor. Thus, the sparsity structure of W characterizes the collaboration topology.

For a given collaboration topology, the collaboration cost is given by

QW =
N∑
m=1

N∑
n=1

Cmncard(Wmn). (6.11)

where Cmn is the cost of sharing an observation from the nth sensor with the mth sensor. Note

that Cnn = 0, since each node can collaborate with itself at no cost. To account for an active
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collaboration link, we use the cardinality function

card(Wmn) =

 0 Wmn = 0

1 Wmn 6= 0.
(6.12)

Next, we define the sensor selection/activation cost. Partitioning the matrix W rowwise, the

linear spatial collaboration process (6.2) can be written as



z1

z2

...

zN


= Wx =



ωT1

ωT2
...

ωTN


x, (6.13)

where ωTn is the nth row vector of W. It is clear from (6.13) that the non-zero rows of W charac-

terize the selected sensors that communicate with the FC. Suppose, for example, that only the nth

sensor communicates with the FC. In this case, it follows from (6.13) that zn = ωTnx and ωm = 0

for m 6= n. The goal of sensor selection is to find the best subset of sensors to communicate with

the FC. This is in contrast to the existing work [44, 45, 48], where the communicating sensors are

selected a priori.

The sensor selection cost can be defined through the row-wise cardinality of W

SW =
N∑
n=1

dn card(‖ωn‖2), (6.14)

where d = [d1, d2, . . . , dN ]T is a given vector of sensor selection cost, and ‖ · ‖2 denotes the `2

norm (or Euclidean norm). In (6.14), use of the `2 norm is motivated by the problem of group

Lasso [92], which uses the `2 norm to promote the group-sparsity of a vector.

Note that both the expressions of transmission cost (6.4) and Fisher information (6.9) involve

a quadratic matrix function [98]. For simplicity of presentation, we convert the quadratic matrix

function by concatenating the entries of W into a row vector w. Specifically, the vector w is given
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by

w = [w1, w2, . . . , wL]T, wl = Wmlnl , (6.15)

where L = N2, ml = d l
N
e, nl = l − (d l

N
e − 1)N and dxe is the ceiling function that yields the

smallest integer not less than x.

As shown in Appendix A.12, the expressions of transmission cost (6.4), Fisher information

(6.9), collaboration cost (6.11), and selection cost (6.14) can be converted into functions of the

collaboration vector w,

J(w) =
wTΩJNw

wTΩJDw + ξ2
, T (w) = wTΩTw, Q(w) =

L∑
l=1

cl card(wl)

P (w) := T (w) +Q(w), S(w) =
N∑
n=1

dn card(‖wGn‖2), (6.16)

where the matrices ΩT, ΩJN, ΩJD are all symmetric positive semidefinite and defined in Appendix A.12,

cl is the lth entry of c that is the row-wise vector of the known cost matrix C, and Gn is an index set

such that wGn = [w(n−1)N+1, w(n−1)N+2, . . . , wnN ]T = ωn in (6.13) for n = 1, 2, . . . , N . Clearly,

the row-sparsity of W is precisely characterized by the group-sparsity of w over the index sets

{Gn}n=1,2,...,N .

Based on the transmission cost T (w), collaboration cost Q(w), and performance measure

J(w), we first pose two sensor collaboration problems by disregarding the cost of sensor selection

and assuming that all N sensors are active.

• Information constrained sensor collaboration

minimize
w

P (w)

subject to J(w) ≥ J̌ ,
(6.17)

where J̌ > 0 is a given information threshold.
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• Energy constrained sensor collaboration

maximize
w

J(w)

subject to P (w) ≤ P̂ ,
(6.18)

where P̂ > 0 is a given energy budget.

Next, we incorporate the sensor selection cost S(w), and pose the optimization problem for

the joint design of optimal sensor selection and collaboration schemes.

• Joint sensor selection and collaboration

minimize
w

P (w) + S(w)

subject to J(w) ≥ J̌ .
(6.19)

In (6.19), we minimize the total energy cost subject to an information constraint. This formulation

is motivated by scenarios where saving energy is the major goal in the context of sensor selection

[99]. Problem (6.19) is similar to (6.17) except for the incorporation of sensor selection cost.

However, we will show that the presence of sensor selection cost makes finding the solution of

(6.19) more challenging; see Section 6.6 for details.

In (6.17)-(6.19), the cardinality function, which appears inQ(w) and S(w), promotes the spar-

sity of w, and therefore the sparsity of W. Thus, we refer to (6.17)-(6.19) as sparsity-aware sensor

collaboration problems. We also note that (6.17)-(6.19) are nonconvex optimization problems due

to the presence of the cardinality function and the nonconvexity of the expression for Fisher infor-

mation (see Remark 2). In the following sections, we will elaborate on the optimization approaches

for solving (6.17)-(6.19).
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6.4 Information constrained sensor collaboration

In this section, we relax the original information constrained problem (6.17) by using an iterative

reweighted `1 minimization method. This results in an `1 optimization problem, which can be

efficiently solved by ADMM.

Due to the presence of the cardinality function, problem (6.17) is combinatorial in nature. A

method for solving (6.17) is to replace the cardinality function with a weighted `1 norm [100]. This

leads to the following optimization problem

minimize
w

wTΩTw + ‖ΩCw‖1

subject to wT (J̌ΩJD −ΩJN)w + J̌ξ2 ≤ 0,
(6.20)

where ΩC = diag(α1c1, α2c2, . . . , αLcL), {αl}l=1,2,...,L denote the weights that are iteratively up-

dated based on αl ← 1/|wl|+ ε, in order to make ‖ΩCw‖1 a good approximation for Q(w). Here

ε is a small positive number which insures that the denominator is always nonzero. To elaborate,

if αl = 1 for all l ∈ {1, 2, . . . , L}, we recover the standard unweighted `1 norm. Since the `0 norm

only counts the number of nonzero entries of a vector, using the `1 norm to approximate the `0

norm has the disadvantage that the amplitudes of the nonzero entries come into play. To compen-

sate for the amplitude of nonzero entries, we iteratively normalize the entries of the argument of

the `1 norm, to make this norm a better proxy for the `0 norm.

Remark 2. In (6.20), the constraint is equivalent to the information inequality in (6.17). According

to Lemma 2 in Appendix A.13, we obtain that the matrix J̌ΩJD − ΩJN is not positive semidefinite.

Indeed, if the matrix J̌ΩJD − ΩJN was positive semidefinite, problem (6.20) would have an empty

feasible set.

Given {αl}l=1,...,L, problem (6.20) is a nonconvex optimization problem, and its objective func-

tion is not differentiable. In what follows, we will employ ADMM to find its locally optimal

solutions.

We begin by reformulating the optimization problem (6.20) in a way that lends itself to the
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application of ADMM,

minimize
w,v

wTΩTw + ‖ΩCv‖1 + I(w)

subject to w = v,

(6.21)

where we have introduced the indicator function I(w)

I(w) =

 0 if wT (J̌ΩJD −ΩJN)w + Jξ2 ≤ 0

∞ otherwise.
(6.22)

The augmented Lagrangian of (6.21) is given by

L(w,v,χ) = wTΩTw + ‖ΩCv‖1 + I(w) + χT (w − v) +
ρ

2
‖w − v‖2

2, (6.23)

where the vector χ is the Lagrangian multiplier, and the scalar ρ > 0 is a penalty weight. The

ADMM algorithm iteratively executes the following three steps for k = 1, 2, . . .

wk+1 = arg min
w

L(w,vk,χk), (6.24)

vk+1 = arg min
v

L(wk+1,v,χk), (6.25)

χk+1 = χk + ρ(wk+1 − vk+1), (6.26)

until ‖wk+1 − vk+1‖2 ≤ εad and ‖vk+1 − vk‖2 ≤ εad, where εad is a stopping tolerance.

It is clear from ADMM steps (6.24)-(6.25) that the original nondifferentiable problem can be

effectively separated into a ‘w-minimization’ subproblem (6.24) and a ‘v-minimization’ subprob-

lem (6.25), of which the former can be treated as a nonconvex quadratic program with only one

quadratic constraint (QP1QC) and the latter admits an analytical solution. In the subsections that

follow, we will elaborate on the execution of the minimization problems (6.24) and (6.25).
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w-minimization step

Completing the squares with respect to w in (6.23), the w-minimization step (6.24) is given by

minimize
w

wTΩTw + ρ
2
‖w − a‖2

2

subject to wT (J̌ΩJD −ΩJN)w + J̌ξ2 ≤ 0,
(6.27)

where we have applied the definition of I(w) in (6.22), and a := vk − 1/ρχk. Problem (6.27) is a

nonconvex QP1QC. To seek the global minimizer of a nonconvex QP1QC, an SDP-based approach

is commonly used [59]. However, computing solutions to SDPs becomes inefficient for problems

with hundreds or thousands of variables. Therefore, we develop a faster approach by exploiting

the KKT conditions of (6.27). This is presented in Proposition 6.1.

Proposition 6.1. The KKT-based solution of problem (6.27) is given by

wk+1 = Ω̃
− 1

2
T Uu,

where Ω̃T := ΩT + ρ
2
I, U is an orthogonal matrix that satisfies the eigenvalue decomposition

1

J̌ξ2
Ω̃
− 1

2
T (J̌ΩJD −ΩJN)Ω̃

− 1
2

T = UΛUT , (6.28)

and u is given by

 u = −g if gTΛg + 1 ≤ 0

u = −(I + µ0Λ)−1g otherwise.
(6.29)

In (6.29), g := −ρ
2
UT Ω̃

− 1
2

T a, and µ0 is a positive root of the equation in µ

f(µ) :=
L∑
l=1

λlg
2
l

(µλl + 1)2
+ 1 = 0, (6.30)

where gl is the lth entry of g, and λl is the lth diagonal entry of Λ.
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Proof: See Appendix A.14. �

The rationale behind deriving the eigenvalue decomposition (6.28) is that by introducing u =

UT Ω̃
1
2
T w, problem (6.27) can be transformed to

minimize
u

uTu + 2uTg

subject to uTΛu + 1 ≤ 0.
(6.31)

The benefit of this reformulation is that the KKT conditions (6.29)-(6.30) for problem (6.31) are

more compact and more easily solved than the SDP formulation, since Λ is a diagonal matrix and

its inversion is tractable.

In general, Eq. (6.30) is a high-order polynomial function and it is difficult to obtain all of its

positive roots. However, we have observed that numerical searches over small targeted intervals

yield satisfactory results. One such interval is given by Lemma 3, and the others are demonstrated

in Remark 3 below. Solutions of (6.30) over small targeted intervals can be found by using the

MATLAB function fminbnd or by using Newton’s method. If we find multiple positive roots, we

select the one corresponding to the lowest objective value of the nonconvex QP1QC (6.27).

Proposition 6.2. The function f(µ) is monotonically decreasing on the interval (0,− 1
λ1

) and the

positive root of f(µ) = 0 is unique when f(0) > 0, where λ1 represents the unique negative

eigenvalue in {λl}l=1,2,...,L.

Proof: See Appendix A.15. �

Remark 3. Motivated by Proposition 6.2, one may inquire about the monotonicity of f(µ) over

the interval µ ∈ (− 1
λ1
,∞). In Appendix A.15, we show that the sign of the first-order derivative

of f(µ) is difficult to determine from (A.35) and (A.36). And our numerical results show that

there may exist other positive roots over the interval (− 1
λ1
,∞). To address this issue, we are

thus motivated to consider multiple subintervals of (− 1
λ1
,∞). Although we cannot guarantee

global optimality for solutions of (6.27) found through KKT [59], our extensive numerical results

show that numerical search over several small intervals of (− 1
λ1
,∞) together with (0,− 1

λ1
) works
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effectively for finding the positive roots of Eq. (6.30), and the ADMM algorithm always converges

to a near-optimal solution of the information constrained collaboration problem.

v-minimization step

Completing the squares with respect to v in (6.23), the v-minimization step (6.25) becomes

minimize
v

‖ΩCv‖1 + ρ
2
‖v − b‖2

2, (6.32)

where b := 1
ρ
χk + wk+1. The solution of (6.32) is given by soft thresholding

vl =

 (1− αtlcl
ρ|bl|

)bl |bl| >
αtlcl
ρ

0 |bl| ≤
αtlcl
ρ

(6.33)

for l = 1, 2, . . . , L, where vl denotes the lth entry of v.

Initialization

To initialize ADMM we require a feasible vector. It was shown in [48, Theorem 1] that the optimal

collaboration vector for a fully-connected network with an information threshold J̌ is a feasible

vector for (6.20); see Appendix A.13. Thus, we choose v0 = w0 and w0 = w̃, where w̃ is given

by (A.29a).

Complexity analysis

To solve the information constrained collaboration problem (6.17), the iterative reweighted `1

method is used as the outer loop, and the ADMM algorithm constitutes the inner loop. It is often

the case that the iterative reweighted `1 method converges within a few iterations [100]. Moreover,

it has been shown in [60] that the ADMM algorithm typically requires a few tens of iterations

for converging with modest accuracy. At each iteration, the major cost is associated with solving
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the KKT conditions in the w-minimization step. The complexity of obtaining a KKT-based so-

lution is given by O(L3) [101], since the complexity of the eigenvalue decomposition dominates

that of Newton’s method. By contrast, using SDP to solve problem (6.17) yields a much higher

complexity of O(L4.5).

6.5 Energy constrained sensor collaboration

In this section, we first explore the correspondence between the energy constrained collaboration

problem and the information constrained problem. With the help of this correspondence, we pro-

pose a bisection algorithm to solve the energy constrained problem.

The energy constrained sensor collaboration problem (6.18) can be written as

maximize
w

wTΩJNw

wTΩJDw + ξ2

subject to wTΩTw+
∑L

l=1cl card(wl) ≤ P̂ .

Compared to the information constrained problem (6.17), problem (6.18) is more involved due to

the nonconvex objective function and the cardinality function in the inequality constraint. Even if

we replace the cardinality function with its `1 norm relaxation, the resulting `1 optimization prob-

lem is still difficult, since the feasibility of the relaxed constraint does not guarantee the feasibility

of the original problem (6.18).

However, if the collaboration topology is given, the collaboration cost
∑L

l=1 cl card(wl) is a

constant and the constraint in (6.18) becomes a homogeneous quadratic constraint, in the sense

that inequality no longer contain terms linear in w. Therefore, problem (6.18) can be solved

by [48, Theorem 1].

In Proposition 6.3, we present the relationship between the energy constrained problem (6.18)

and the information constrained problem (6.17). Motivated by this relationship, we then take

advantage of the solution of (6.17) to obtain the collaboration topology for (6.18). This idea will

be elaborated on later.
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Proposition 6.3. Consider the two problems (6.17) and (6.18)

minimize
w

P (w)

subject to J(w) ≥ J̌
and

maximize
w

J(w)

subject to P (w) ≤ P̂ ,

where the optimal solutions are denoted by w1 and w2, respectively. If J̌ = J(w2), then w1 = w2;

If P̂ = P (w1), then w2 = w1.

Proof: see Appendix A.16. �

Proposition. 6.3 implies that the solution of the energy constrained problem (6.18) can be ob-

tained by seeking the global minimizer of the information constrained problem (6.17), if the infor-

mation threshold in (6.17) is set by using the optimal value of (6.18). However, this methodology

is intractable in practice since the optimal value of (6.18) is unknown in advance, and the globally

optimal solution of problem (6.17) may not be found using reweighted `1-based methods.

Instead of deriving the solution of (6.18) from (6.17), we can infer the collaboration topology

of the energy constrained problem (6.18) from the sparsity structure of the solution to the informa-

tion constrained problem (6.17) using a bisection algorithm. The objective function of (6.18) (in

terms of Fisher information) is bounded over the interval [0, J0), where J0 is given in Lemma 1 of

Appendix A.13. And there is a one-to-one correspondence between the value of Fisher information

evaluated at the optimal solution of (6.18) and the energy budget P̂ . Therefore, we perform a bi-

section algorithm on the interval, and then solve the information constrained problem to obtain the

resulting energy cost and collaboration topology. The procedure terminates if the resulting energy

cost is close to the energy budget P̂ . We summarize this method in Algorithm 6.1.

We remark that the collaboration topology obtained in Step 2 of Algorithm 6.1 is not globally

optimal. However, we have observed that for the information constrained sensor collaboration

(6.17), the value of energy cost P is monotonically related to the value of desired estimation dis-

tortion. Therefore, the proposed bisection algorithm converges in practice and at most requires

dlog2(J/εbi)e iterations. Once the bisection procedure terminates, we obtain a locally optimal

collaboration topology for (6.18). Given this topology, the energy constrained problem (6.18)
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Algorithm 6.1 Bisection algorithm for seeking the optimal collaboration topology of (6.18)

Require: given εbi > 0, J = 0 and J = J0

1: repeat J̌ = J+J
2

2: for a given J̌ , solve (6.17) to obtain the collaboration topology and the resulting energy
cost P

3: if P < P̂ then J = J̌
4: else J = J̌
5: end if
6: until J − J < εbi or |P̂ − P | < εbi

becomes a problem with a quadratic constraint and an objective that is a ratio of homogeneous

quadratic functions, whose analytical solution is given by [48, Theorem 1]. Through the afore-

mentioned procedure, we obtain a locally optimal solution to problem (6.18).

6.6 Joint sensor selection and collaboration

In this section, we study the problem of the joint design of optimal sensor selection and collabora-

tion schemes as formulated in (6.19). Similar to solving the information constrained collaboration

problem (6.17), we first relax the original problem to a nonconvex `1 optimization problem. How-

ever, in contrast to Section 6.4, we observe that ADMM fails to converge (a possible reason is

explored later). To circumvent this, we adopt an iterative method to solve the nonconvex `1 opti-

mization problem.

Using the reweighted `1 minimization method, we iteratively replace the cardinality function

with the weighted `1 norm, which yields at every iteration

minimize
w

wTΩTw + ‖Ω̃Cw‖1 +
N∑
n=1

d̃n‖wGn‖2

subject to wT (J̌ΩJD −ΩJN)w + J̌ξ2 ≤ 0,

(6.34)

where Ω̃C := diag(τ1c1, τ2c2, . . . , τLcL), d̃n := δndn, and τl and δn are positive weights that are

iteratively updated in order to make ‖Ω̃Cw‖1 and
∑N

n=1 d̃n‖wGn‖2 good approximations for Q(w)

and S(w). Let the solution of (6.34) be w, then the weights τl and δn for the next reweighting
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iteration are updated as [100]

τl ←
1

|wl|+ ε
, δn ←

1

‖wGn‖2 + ε
,

where ε is a small positive number that insures a nonzero denominator.

Convex restriction

Problem (6.34) is a nonconvex optimization problem. One can use ADMM to split (6.34) into a

nonconvex QP1QC (w-minimization step) and an unconstrained optimization problem with an ob-

jective function composed of `1 and `2 norms (v-minimization step), where the latter can be solved

analytically. However, our numerical examples show that the resulting ADMM algorithm fails to

converge. Note that in the w-minimization step, the sensor selection cost is excluded and each sen-

sor collaborates with itself at no cost. Therefore, to achieve an information threshold, there exist

scenarios in which the collaboration matrix yields nonzero diagonal entries. This implies that the

w-minimization step does not produce group-sparse solutions (i.e., row-wise sparse collaboration

matrices). However, the v-minimization step always leads to group-sparse solutions. The mis-

matched sparsity structures of solutions in the subproblems of ADMM are responsible for lack of

convergence, which we circumvent by using a linearization method to convexify the optimization

problem.

A linearization method is introduced in [102] for solving the nonconvex quadratically con-

strained quadratic program (QCQP) by linearizing the nonconvex parts of quadratic constraints,

thus rendering a convex QCQP. In (6.34), the nonconvex constraint is given by

wT J̌ΩJDw + J̌ξ2 ≤ wTΩJNw, (6.35)

where we recall that ΩJD and ΩJN are positive semidefinite.

In (6.35), the only source of nonconvexity is the difference of convex (DC) function wT J̌ΩJDw−
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wTΩJNw. We linearize the right hand side of (6.35) around a feasible point β

wT J̌ΩJDw + J̌ξ2 ≤ βTΩJNβ + 2βTΩJN(w − β). (6.36)

Note that the right hand side of (6.36) is an affine lower bound on the convex function wTΩJNw.

This implies that the set of w that satisfy (6.36) is a strict subset of the set of w that satisfy (6.35).

By replacing (6.35) with (6.36), we obtain a ‘restricted’ convex version of problem (6.34)

minimize
w

ϕ(w) := wTΩTw +‖Ω̃Cw‖1 +
N∑
n=1

d̃n‖wGn‖2

subject to wT Ω̃JDw− 2β̃Tw+ γ̃ ≤ 0,

(6.37)

where Ω̃JD := J̌ΩJD, β̃ := ΩJNβ, and γ̃ := βTΩJNβ + J̌ξ2. Different from (6.35), the inequality

constraint in (6.37) no longer represents the information inequality but becomes a convex quadratic

constraint. And the optimal value of (6.37) yields an upper bound to problem (6.34).

Algorithm 6.2 CCP for solving problem (6.34)

Require: given εli > 0 and w0 = w̃.
1: for iteration s = 1, 2, . . . do
2: set β = ws−1.
3: solve (6.37) for the solution ws by using ADMM.
4: until ‖ϕ(ws)− ϕ(ws−1)‖ < εli.
5: end for

The use of linearization to convexify nonconvex problems with DC type functions is known

as the convex-concave procedure (CCP) [102]. We summarize the application of CCP in Algo-

rithm 6.2. In the following subsection, we will elaborate on the implementation of ADMM in

Step 3 of Algorithm 6.2. We remark that the convergence of Algorithm 6.2 is guaranteed [103],

since Algorithm 6.2 starts from a feasible point w0 that satisfies (6.35) and at each iteration, we

solve a linearized convex problem with a smaller feasible set which contains the linearization

point (i.e., the solution at the previous iteration). In other words, for a given linearization point

β = ws−1, we always obtain a new feasible point ws with a lower or equal objective value at each
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iteration.

Solution via ADMM

Similar to (6.21) in Section 6.4, we introduce the auxiliary variable v to replace w in the `1 and

`2 norms in (6.37) while adding the constraint w = v, and split problem (6.37) into a sequence of

subproblems as in (6.24)-(6.26). However, compared to Section 6.4, the current ADMM algorithm

yields different subproblems due to the presence of the `2 norm in the objective function and the

convexification in the constraint.

Completing sqaures with respect to w in the augmented Lagrangian function corresponding to

problem (6.37), the w-minimization step is given by

minimize
w

wT Ω̃Tw − ρaTw

subject to wT Ω̃JDw−2β̃Tw+ γ̃ ≤0,
(6.38)

where Ω̃T = ΩT + ρ
2
I, a = vk − 1/ρχk, vk and χk denote the value of v and χ at the kth iteration

of ADMM, and χ is the dual variable.

To solve the convex QCQP (6.38), the complexity of using interior-point method in standard

solvers is roughlyO(L3.5) [104]. To reduce the computational complexity, we can derive the KKT-

based solution. Since problem (6.38) is convex, KKT conditions are both necessary and sufficient

for optimality. This is summarized in Proposition 6.4.

Proposition 6.4. The optimal solution of problem (6.38) is given by

wk+1 = Ω̃
− 1

2
T Uu,

where U is given by the following eigenvalue decomposition

1

γ̃
Ω̃
− 1

2
T Ω̃JDΩ̃

− 1
2

T = UΛUT ,
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and u is given by

 u = −g if gTΛg + 2gTe + 1 ≤ 0

u = −(I + µ1Λ)−1(g + µ1e) otherwise.
(6.39)

In (6.39), g = −ρUT Ω̃
− 1

2
T a/2, e = −UT Ω̃

− 1
2

T β̃/γ̃, µ1 is the positive root of the equation in µ

L∑
l=1

(λlgl − el)2

λl(1 + µλl)2
−

L∑
l=1

e2
l

λl
+ 1 = 0,

el and gl are the lth elements of e and g, respectively, and λl is the lth diagonal entry of Λ.

Proof: See Appendix A.14. �

Completing sqaures with respect to v in the augmented Lagrangian function corresponding to

problem (6.37), the v-minimization step is given by

minimize
v

‖Ω̃Cv‖1 +
N∑
n=1

d̃n‖vGn‖2 +
ρ

2
‖v − b‖2

2, (6.40)

where b = wk+1 + 1/ρχk.

We recall that Ω̃C defined in (6.34) is a diagonal matrix. Let the vector f be composed of

the diagonal entries of Ω̃C. We then define a sequence of diagonal matrices Fn := diag(fGn) for

n = 1, 2, . . . , N , where fGn is a vector composed of those entries of f whose indices belong to the

set Gn. Since the index sets {Gn}j=1,2,...,N are disjoint, problem (6.40) can be decomposed into a

sequence of subproblems for n = 1, 2, . . . , N ,

minimize
vGn

‖FnvGn‖1 + d̃n‖vGn‖2 +
ρ

2
‖vGn− bGn‖2

2. (6.41)

Problem (6.41) can be solved analytically via the following Proposition.
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Proposition 6.5. The minimizer of (6.41) is given by

vGn =


(1− d̃n

ρ‖ν‖2 )ν ‖ν‖2 ≥ d̃n
ρ

0 ‖ν‖2 <
d̃n
ρ
,

(6.42)

where ν = sgn(bGn) �max(|bGn| − 1
ρ
fGn , 0), the operator sgn(·) is defined in a componentwise

fashion as

sgn(x) =


1 x > 0

0 x = 0

−1 x < 0,

� denotes the point-wise product, and the operator max(x,y) returns a vector whose entries are

the pointwise maximum of the entries of x and y.

Proof: See Appendix A.17. �

In Algorithm 6.3, we present our proposed ADMM algorithm for solving (6.37).

Algorithm 6.3 Solving problem (6.37) via ADMM

Require: given ρ, εad, χ0 = 0 and w0 = v0 = w̃.
1: for k = 0, 1, . . . do
2: obtain wk+1 from a standard QCQP solver or Prop. 6.4.
3: obtain vk+1 =[(vk+1

G1
)T ,. . . ,(vk+1

GN )T ]T from Prop. 6.5.
4: update dual variable χk+1 = χk + ρ(wk+1 − vk+1).
5: until ‖wk+1 − vk+1‖2 ≤ εad, ‖vk+1 − vk‖2 ≤ εad.
6: end for

To summarize, for solving the original problem (6.19) we first replace the cardinality function

with the weighted `1 norm, which yields the nonconvex problem (6.34). We then use the lineariza-

tion method to convexify (6.34). The resulting convex problem (6.37) is solved by ADMM as

outlined in Algorithm 6.3.



111

6.7 Numerical results

In this section, we will illustrate the performance of our proposed sparsity-aware sensor collab-

oration methods through numerical examples. The estimation system considered here is shown

in Fig.6.1, where for simplicity, we assume that the channel gain and uncertainties are such that

the network is homogeneous and equicorrelated. As in [48, Example 3], we denote the expected

observation and channel gains by h0 and g0, the observation and channel gain uncertainties by αh

and αg, the measurement noise variance and correlation by ζ2 and ρcorr, and thereby assume


h = h0

√
αh1, Σh = h2

0(1− αh)I,

Σε = ζ2[(1− ρcorr)I + ρcorr11T ],

g = g0
√
αg1, Σg = g2

0(1− αg)I.

(6.43)

Note that channel gains can also be calculated based on path loss models [105] but we chose the

homogeneous model for the sake of simplicity. The collaboration cost matrix C is given by

Cmn = αc‖sm − sn‖2 (6.44)

for m,n = 1, 2, . . . , N , where αc is a positive parameter and sn denotes the location of sensor n.

The vector of sensor selection cost d is give by

dn = αs‖sn − sfc‖2 (6.45)

for n = 1, 2, . . . , N , where αs is a positive parameter and sfc denotes the location of the FC.

In our experiments, unless specified otherwise, we shall assume that h0 = g0 = 1, αh = αg =

0.7, ρcorr = 0.5, ξ2 = ζ2 = 1, η2 = 0.1, and αc = αs = 0.01. The FC and N sensors are randomly

deployed on a 10 × 10 grid, where the value of N will be specified in different examples. While

employing the proposed optimization methods, we select ρ ≥ 20 in ADMM, ε = 10−3 in the

reweighted `1 method and εli = εad = 10−3 for the stopping tolerance. In our numerical examples,
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the reweighted `1 method and the linearization method converge within 10 iterations. For ADMM,

the required number of iterations is less than 100.

For a better depiction of estimation performance, since D0 < Dw ≤ η2 (see Lemma 1 in

Appendix A.13), we display the normalized distortion

Dnorm :=
D(w)−D0

η2 −D0

∈ (0, 1], (6.46)

where D(w) defined in (6.10) is monotonically related to the value of Fisher information, and D0

is the minimum estimation distortion given by Lemma 1. Further to characterize the number of

established collaboration links, we define the percentage of collaboration links

Perw :=

∑L
l=1 card(wl)−N

L−N
× 100 (%), (6.47)

where L = N2 is the dimension of w, and Perw belongs to [0, 100%]. When Perw = 0, the

network operates in a distributed manner (i.e., only the diagonal entries of W are nonzero). When

Perw = 100%, the network is fully-connected (i.e., W has no zero entries).

In Fig. 6.2, we present results when we apply the reweighted `1-based ADMM algorithm to

solve the information constrained problem (6.17). For comparison, we also show the results of

using an exhaustive search that enumerates all possible sensor collaboration schemes, where for

the tractability of an exhaustive search, we consider a small sized sensor network with N = 5. In

the top subplot of Fig. 6.2, we present the minimum energy cost as a function ofDnorm. We can see

that the energy cost and estimation distortion is monotonically related, and the proposed approach

assures near optimal performance compared to the results of exhaustive search. In the bottom

subplot, we show the number of active collaboration links as a function of normalized distortion.

Note that a larger estimation distortion corresponds to fewer collaboration links.

In Fig. 6.3, we present the results for the information constrained problem for a relatively large

network with N = 10 nodes, and present the number of collaboration links and the required trans-

mission cost as a function of the collaboration cost parameter αc for different values of estimation
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Fig. 6.2: Performance evaluation for information constrained sensor collaboration.

distortion Dnorm ∈ {0.05, 0.1, 0.2}. Fig. 6.3-(a) shows that the number of collaboration links in-

creases as αc decreases. This is expected, since a smaller value of αc corresponds to a smaller cost

of sensor collaboration, and thus encourages a larger number of collaboration links to be estab-

lished. If we fix the value of αc, we also observe that the number of collaboration links increases

as Dnorm decreases. This is consistent with the results in the bottom subplot of Fig 6.2. We show

the specific collaboration topologies that correspond to the marked values of αc in Fig. 6.4. These

will be discussed in detail later.

Fig. 6.3-(b) shows that the transmission cost increases as αc increases for a given estimation

distortion. Note that a larger value of αc indicates a higher cost of sensor collaboration. Therefore,

to achieve a certain estimation performance, more transmission cost would be consumed instead

of sensor collaboration. This implies that the transmission cost and collaboration cost are two

conflicting terms. As we continue to increase αc, the transmission cost converges to a fixed value

for a given Dnorm. This is because the network topology cannot be changed any further (converges

to the distributed network), where the transmission cost is deterministic for the given topology and

distortion.
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Fig. 6.3: Information constrained collaboration for different values of collaboration cost
parameter αc as Dnorm ∈ {0.05, 0.1, 0.2}: (a) Percentage of collaboration links; (b) Trans-
mission cost; (c) Trade-off between collaboration links and transmission cost.

Fig. 6.3-(c) shows the trade-off between the number of collaboration links and the consumed

transmission cost by varying the parameter αc. One interesting observation is that the transmission

cost ceases to decrease significantly when over 50% collaboration links are established. The reason

is that the transmission cost is characterized by the magnitude of nonzero entries in w, which has

very small increment as the number of active links is relatively large.
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Fig. 6.4: Collaboration topologies: (a) αc = 5 × 10−3, card(w) = 18; (b) αc = 10−3,
card(w) = 39; (c) αc = 2× 10−4, card(w) = 70.

In Fig. 6.4, we present the collaboration topologies obtained from solutions of the information

constrained problem (with Dnorm = 0.2) by varying the parameter of collaboration cost αc; see

the labeled points in Fig. 6.3-(a). In each subplot, the solid lines with arrows represent the col-

laboration links among local sensors. For example in Fig. 6.4-(a), the line between sensor 1 and

sensor 4 indicates that these two sensors share measurements with each other. Fig. 6.4-(a) shows
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that the nearest neighboring sensors collaborate initially because of the lower collaboration cost.

We continue to decrease αc, Fig. 6.4-(c) and (d) show that more collaboration links are established,

and sensors tend to collaborate over the entire spatial field rather than aggregating in a small neigh-

borhood.
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Fig. 6.5: Performance evaluation of sensor selection and collaboration.

In Fig. 6.5, we employ the convex restriction based ADMM method to solve problem (6.19)

for joint sensor selection and collaboration. We show the resulting energy cost, number of col-

laboration links and selected sensors as functions of estimation distortion Dnorm. For comparison,

we also present the optimal results obtained from an exhaustive search, where N = 5 sensors

are assumed in this example. We observe that the proposed approach assures near optimal per-

formance for all values of Dnorm. Moreover, the energy cost, number of collaboration links and

selected sensors increases as Dnorm decreases, since a smaller estimation distortion enforces more

collaboration links and activated sensors.

In Fig. 6.6, we present the trade-offs between the established collaboration links and selected

sensors that communicate with the FC. These trade-offs are achieved by fixing αc = 0.1 and
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Fig. 6.6: Trade-off between collaboration links and selected sensors.

varying the parameter of sensor selection cost αs for Dnorm = 0.3, 0.5 and 0.7. We fix Dnorm and

decrease αs, which leads to an increase in the number of selected sensors, meanwhile, the number

of collaboration links decreases. That is because to achieve a given estimation distortion, less

collaboration links are required if more sensors are selected to communicate with the FC. If we fix

the number of collaboration links, the number of selected sensors increases as Dnorm decreases,

since a smaller Dnorm enforces more activated sensors. For the marked points as Dnorm = 0.7,

we show the specific sensor collaboration and selection schemes in Fig. 6.7, where the solid line
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Fig. 6.7: Network topologies for Dnorm = 0.7 and αs = 0.02, 0.15 and 0.65.
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with an arrow represents the collaboration link between two sensors, and the dashed line from one

sensor to the FC signifies that this sensor is selected to communicate with the FC. Clearly, more

collaboration links are established as fewer sensors are selected to communicate with the FC.

6.8 Summary

In this chapter, we addressed the problem of sensor collaboration with nonzero collaboration and

selection costs for distributed estimation over a coherent MAC. We showed that optimal sensor

collaboration and selection schemes can be jointly designed by promoting the elementwise and

rowwise sparsity of the collaboration matrix. The formulated sparsity-aware optimization problem

is nonconvex in nature, and we convexified the problem by using a reweighted `1 norm and the

convex-concave procedure, and solved the resulting convex program via ADMM. It was empiri-

cally shown that there exists a trade-off between sensor collaboration and sensor selection for a

given estimation performance. In the next chapter, we will explore the problem of sensor collabo-

ration for the estimation of time-varying parameters in dynamic networks.
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CHAPTER 7

SENSOR COLLABORATION FOR

ESTIMATION OF DYNAMIC PARAMETERS

7.1 Introduction

In the previous chapter, sensor collaboration was studied in static networks, where sensors take a

single snapshot of the static parameter, and then initiate sensor collaboration protocols designed in

the setting of single-snapshot estimation. Here we study the problem of sensor collaboration for

the estimation of time-varying parameters in dynamic networks that involve, for example, time-

varying observation and channel gains. Moreover, the parameter to be estimated, such as daily

temperature and precipitation in environmental monitoring [49,50], is often temporally correlated.

Therefore, development of sensor collaboration schemes for the estimation of temporally corre-

lated parameters is an important task.

In this chapter, we aim to find the optimal sensor collaboration scheme at each time step by min-

imizing the estimation distortion over a finite time horizon subject to individual energy constraints

of sensors. Due to the presence of (a) temporal dynamics in system, (b) temporal correlation of

parameter, and (c) energy constraints in time, the design of optimal sensor collaboration schemes

at multiple time steps are coupled with each other, and thus poses many challenges in problem
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formulation and optimization compared to the previous work. For example, when parameters of

interest are temporally correlated, expressing the estimation distortion in a succinct closed form

(with respect to collaboration variables) becomes intractable. It should be pointed out that even for

uncorrelated parameters, finding the optimal collaboration scheme for each time step is nontrivial

since energy constraints are temporally inseparable.

The rest of the chapter is organized as follows. In Section 7.2, we present the general formu-

lation for optimal sensor collaboration in dynamic network. In Section 7.3, we discuss two types

of sensor collaboration problems for the estimation of temporally uncorrelated and correlated pa-

rameters. In Section 7.4, we study the sensor collaboration problem with uncorrelated parameters.

In Section 7.5, we propose efficient optimization methods to solve the sensor collaboration prob-

lem with correlated parameters. In Section 7.6, we demonstrate the effectiveness of our approach

through numerical examples. Finally, in Section 7.7 we summarize our work and discuss future

research directions.

7.2 Problem statement

The task here is to estimate a time-varying parameter θk over a time horizon of length K. As

shown in Fig. 6.1, sensors first accquire their raw measurements via a linear sensing model, and

then update their observations through spatial collaboration, where collaboration refers to the act

of sharing measurements with neighboring sensors. The collaborative signals are then transmitted

through a coherent MAC to the FC, which finally determines a global estimate of θk for k ∈ [K].

The vector of measurements from N sensors at time k is given by the linear sensing model

xk = hkθk + εk, k ∈ [K], (7.1)

where for notational simplicity, let [K] denote the integer set {1, 2, . . . , K}, xk = [xk,1, . . . , xk,N ]T

is the vector of measurements, hk = [hk,1, . . . , hk,N ]T is the vector of observation gains, θk is a

random process with zero mean and variance σ2
θ , εk = [εk,1, . . . , εk,N ]T is the vector of Gaussian
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noises with i.i.d variables εk,n ∼ N (0, σ2
ε ) for k ∈ [K] and n ∈ [N ].

After linear sensing, each sensor may pass its observation to another sensor for collaboration

prior to transmission to the FC. With a relabelling of sensors, we assume that the first M sensors

(out of a total of N sensor nodes) communicate with the FC. Collaboration among sensors is

represented by a known adjacency matrix A ∈ RM×N with zero-one entries, namely,Amn ∈ {0, 1}

for m ∈ [M ] and n ∈ [N ]. Here Amn = 1 signifies that the nth sensor shares its observation with

the mth sensor. Conversely, Amn = 0 indicates the absence of a collaboration link between the nth

and mth sensors.

Based on the adjacency matrix, the sensor collaboration process at time k is given by

zk = Wkxk, Wk ◦ (1M1TN −A) = 0, k ∈ [K], (7.2)

where zk = [zk,1, zk,2, . . . , zk,M ]T , zk,m is the signal after collaboration at sensor m and time k,

Wk ∈ RM×N is the collaboration matrix that contains collaboration weights (based on the energy

allocated) used to combine sensor measurements at time k, ◦ denotes the elementwise product, 1N

is the N × 1 vector of all ones, and 0 is the M × N matrix of all zeros. In what follows, while

refering to vectors of all ones and all zeros, their dimensions will be omitted for simplicity but can

be inferred from the context. In (7.2), we assume that sharing of an observation is realized through

an ideal (noise-less and cost-free) communication link. The proposed ideal collaboration model

enables us to obtain explicit expressions for transmission cost and estimation distortion.

After sensor collaboration, the message zk is transmitted through a coherent MAC so that the

received signal yk at the FC is a coherent sum

yk = gTk zk + ςk, k ∈ [K], (7.3)

where gk = [gk,1,, gk,2, . . . , gk,M ]T is the vector of channel gains, and ςk is temporally white Gaus-

sian noise with zero mean and variance σ2
ς .

We next define the transmission cost of the mth sensor at time k, which refers to the energy
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consumption of transmitting the collaborative message zk to the FC. That is,

Tm(Wk) = Eθk,εk [z
2
k,m] = eTmWk(σ

2
θhkh

T
k + σ2

ε IN)WT
k em, (7.4)

for m ∈ [M ] and k ∈ [K], where em ∈ RM is a basis vector with 1 at the mth coordinate and 0s

elsewhere, and IN is the N × N identity matrix. In what follows, while refering to basis vector

and identity matrix, their dimensions will be omitted for simplicity but can be inferred from the

context.

From (7.1) – (7.3), the vector of received signals at the FC can be expressed as a linear function

of time-varying parameters θ = [θ1, θ2, . . . , θK ]T ,

y = DWDhθ + ν, DW := blkdiag{gTk Wk}Kk=1, (7.5)

where y = [y1, y2, . . . , yK ]T , ν = [ν1, ν2, . . . , νK ]T , νk := gTk Wkεk + ςk, Dh := blkdiag{hk}Kk=1,

and blkdiag{Xi}ni=1 denotes the block-diagonal matrix with diagonal blocks X1,X2, . . . ,Xn.

At the FC, we employ the LMMSE to estimate θ, where we assume that the FC knows the

observation gains, channel gains, and the second-order statistics of the parameters of interest and

additive noises. The corresponding estimator and estimation error covariance are given by [58,

Theorem 10.3]

 θ̂W = (Σ−1
θ + DT

hDT
WD−1

ν DWDh)
−1DT

hDT
WD−1

υ y

PW = (Σ−1
θ + DT

hDT
WD−1

ν DWDh)
−1,

(7.6)

where Σθ represents the prior knowledge about the parameter correlation, particularly Σθ = σ2
θI

for temporally uncorrelated parameters, and Dν := σ2
εDWDT

W + σ2
ς I. It is clear from (7.6) that

both the LMMSE and the estimation error covariance matrix are functions of collaboration matrices

{Wk}, and their dependence on {Wk} is through DW . This dependency does not lend itself to

easy optimization of scalar-valued functions of PW for design of the optimal sensor collaboration
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scheme. More insights into the LMMSE (7.6) will be provided later.

We now state the main optimization problem considered in this work for sensor collaboration

minimize tr (PW )

subject to
K∑
k=1

Tm(Wk) ≤ Em, m ∈ [M ]

Wk ◦ (1M1TN −A) = 0, k ∈ [K],

(7.7)

where Wk is the optimization variable for k ∈ [K], tr(PW ) denotes the estimation distortion of

using the LMMSE, which has a special form shown in the next section if parameters are uncor-

related or the correlation prior is not available, Tm(Wk) is the transmission cost given by (7.4),

Em is a prescribed energy budget of the mth sensor, and A is the adjacency matrix to characterize

the network topology. Although sensor collaboration is performed with respect to a time-invariant

(fixed) topology matrix A, energy allocation in terms of the magnitude of nonzero entries in Wt

is time varying in the presence of temporal dynamics (e.g., time-varying observation and channel

gains) of the sensor network. As will be evident later, the proposed sensor collaboration approach

is also applicable to the problem with time-varying topologies. The problem structure and the

solution of (7.7) will be elaborated on in the following sections.

7.3 Reformulation and simplification

In what follows, we simplify problem (7.7) by exploiting the sparsity structure of the adjacency

matrix and concatenating the nonzero entries of a collaboration matrix into a collaboration vector.

We show that the resulting optimization problem involves special types of nonconvexities.

In problem (7.7), the only unknowns are the nonzero entries of collaboration matrices. Moti-

vated by that, we concatenate these nonzero entries (columnwise) into a collaboration vector

wk = [wk,1, wk,2, . . . , wk,L]T , (7.8)
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where wk,l denotes the lth entry of wk, and L is the number of nonzero entries of the adjacency

matrix A. We note that given wk,l, there exists a row index ml and a column index nl such that

wk,l = [Wk]mlnl , where [X]mn (orXmn) denotes the (m,n)th entry of a matrix X. We demonstrate

the vectorization of Wk through an example in Fig. 7.1, where we consider N = 3 sensor nodes,

M = 3 communicating nodes, and 2 collaboration links.

1

2

3 FC

𝑨
1 0 0
0 1 1
0 1 1
𝑾𝑘 → 𝒘𝑘

𝑤𝑘,1 0 0

0 𝑤𝑘,2 𝑤𝑘,4

0 𝑤𝑘,3 𝑤𝑘,5

𝑙 𝑚𝑙 𝑛𝑙

1 1 1

2 2 2

3 3 2

4 2 3

5 3 3

Fig. 7.1: Example of vectorization of Wk.

Collaboration problem for estimation of uncorrelated parameters

When the parameters of interest are uncorrelated, the estimation error covariance matrix (7.6)

simplifies to

PW =
(
σ−2
θ I + DT

hDT
w(σ2

εDwDT
w + σ2

ς I)−1DwDh

)−1

=

(
σ−2
θ I + diag

{
gTk Wkhkh

T
kWT

k gk
σ2
εg

T
t WkWT

k gt + σ2
ς

}K
k=1

)−1

= diag

{
σ2
θσ

2
εg

T
k WkW

T
k gk + σ2

θσ
2
ς

σ2
θg

T
k WkhkhTkWT

k gk+σ2
εg

T
k WkWT

k gk+σ2
ς

}K
k=1

, (7.9)

where diag{ak}Kk=1 denotes a diagonal matrix with diagonal entries a1, a2, . . . , aK .

It is clear from (7.9) and (7.4) both the estimation error covariance matrix and the transmis-

sion cost contain quadratic matrix functions [98], which can be converted into quadratic vector
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functions according to the relationship between Wk and wk stated in Proposition 7.1.

Proposition 7.1. Let w ∈ RL be the vector of stacking the nonzero entries of W ∈ RM×N

columnwise, the expression bTW can be written as a function of w,

bTW = wTB, (7.10)

where b ∈ RN is a coefficient vector, B is an L×N matrix whose (l, n)th entry is given by

Bln =

 bml n = nl

0 otherwise,
(7.11)

and the indices ml and nl satisfy that wl = Wmlnl for l ∈ [L].

Proof: The proof follows from [48, Sec. III-A]. �

From (7.9) and Proposition 7.1, the objective function of problem (7.7) can be rewritten as

φ(w) := tr(PW ) =
K∑
k=1

σ2
θσ

2
εw

T
k Rkwk + σ2

θσ
2
ς

wT
k Skwk + σ2

ς

, (7.12)

where we use the fact that gTk Wk = wT
k Gk, Gk is an L × N matrix defined as (7.11), Rk :=

GkG
T
k , and Sk := Gk(σ

2
θhkh

T
k + σ2

ε I)GT
k . Clearly, both Rk and Sk are positive semidefinite

matrices.

Moreover, the transmission cost (7.4) can be rewritten as

Tm(wk) := wT
k Qk,mwk, (7.13)

where Qk,m := Em(σ2
θ,khkh

T
k + σ2

ε I)ET
m, and Em is defined as (7.11) such that eTmWk = wT

k Em.

We remark that Qk,m is positive semidefinite for k ∈ [K] and m ∈ [M ].

From (7.12) and (7.13), the sensor collaboration problem for the estimation of temporally un-
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correlated parameters becomes

minimize φ(w)

subject to
K∑
k=1

wT
k Qk,mwk ≤ Em, m ∈ [M ],

(7.14)

where w = [wT
1 ,w

T
2 , . . . ,w

T
K ] is the optimization variable, and φ(w) is the estimation distortion

given by (7.12). Note that (7.14) cannot be decomposed in time since sensor energy constraints

are temporally inseparable.

Compared to problem (7.7), the topology constraint in terms of the adjacency matrix is elim-

inated without loss of performance in (7.14) since the sparsity structure of the adjacency matrix

has been taken into account while constructing the collaboration vector. (7.14) is a nonconvex

optimization problem since its objective function is given by a sum of rational functions [106]. In

the case of single-snapshot estimation (namely, K = 1), the objective function of (7.14) simplifies

to a single quadratic ratio. It has been shown in [48] that such a nonconvex problem can be readily

solved via convex programming. In contrast, the presence of the sum of quadratic ratios makes

solving (7.14) more challenging. We present the solution to (7.14) in Section 7.4.

Collaboration problem for estimation of correlated parameters

When parameters are temporally correlated, the covariance matrix Σθ is no longer diagonal. As

a result, expressing the estimation error in a succinct form as in (7.12) becomes intractable. We

recall from (7.6) that the dependence of the estimation error covariance on collaboration matrices

is through DW . According to the matrix inversion lemma, we are able to simplify (7.6) via the

relationship

DT
W (σ2

εDWDT
W + σ2

ς I)−1Dw = σ−2
ε I− (σ2

ε I + σ4
εσ
−2
ς DT

WDW )−1. (7.15)
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Substituting (7.15) into (7.6), we obtain

PW =
(
C− σ−2

ε DT
h (I + σ2

εσ
−2
ς DT

WDW )−1Dh

)−1
(7.16)

where C := Σ−1
θ + σ−2

ε DT
hDh. According to the definition of DW in (A.55), we obtain

DT
WDW = blkdiag{WT

k gkg
T
k Wk}Kk=1 = blkdiag{GT

kwkw
T
k Gk}Kk=1, (7.17)

where Gk has been introduced in (7.12).

Combining (7.16) and (7.17), we can rewrite the estimation error covariance as a function of

the collaboration vector

Pw :=
(
C−σ−2

ε diag
{
hTk
(
I+σ2

εσ
−2
ς GT

kwkw
T
k Gk

)−1
hk
}K
k=1

)−1

. (7.18)

From (7.18), the sensor collaboration problem for the estimation of temporally correlated pa-

rameters becomes

minimize tr(Pw)

subject to
K∑
k=1

wT
k Qk,mwk ≤ Em, m ∈ [M ],

(7.19)

where w is the optimization variable, and the matrix Ωm is defined in (7.14). Note that (7.19) is

not a convex optimization problem due to the presence of the rank-one matrix wkw
T
k in (7.18).

However, such a nonconvexity can be effectively handled via proper convexification techniques.

We will present the solution to (7.19) in Section 7.5.

We finally remark that the proposed sensor collaboration methodologies in this paper apply

equally well to the case of sensor collaboration with respect to time-varying topologies, namely,

At for t ∈ [T ]. The only difference from sensor collaboration with a fixed topology is that the col-

laboration vector wt would be constructed by concatenating the nonzero entries of Wt according



127

to At rather than A at each time step.

7.4 Sensor collaboration for estimation of uncorrelated pa-

rameters

In this section, we show that (7.14) can be transformed into a special nonconvex optimization

problem, where the difference of convex (DC) functions carries all the nonconvexity. Spurred by

the problem structure, we employ a convex-concave procedure (CCP) to solve (7.14).

Equivalent optimization problem

We express (7.14) in its epigraph form

minimize 1Tu

subject to
σ2
εw

T
k Rkwk + σ2

ς

wT
k Skwk + σ2

ς

≤ uk, k ∈ [K]

wTQmw ≤ Em, m ∈ [M ],

(7.20a)

(7.20b)

(7.20c)

where u = [u1, u2, . . . , uK ]T is the vector of newly introduced optimization variables, and Qm :=

blkdiag{Qk,m}Kk=1. We note that the inequality (7.20b) implicitly adds the additional constraint

uk ≥ 0 since both Rk and Sk are positive semidefinite for k ∈ [K].

We further introduce new variables rk and sk for k ∈ [K] to rewrite (7.20b) as

rk
sk
≤ uk, sk > 0, wT

k Skwk + σ2
ς ≥ sk, σ

2
εw

T
k Rkwk + σ2

ς ≤ rk, (7.21)

where the equivalence between (7.20b) and (7.21) holds since the minimization of 1Tu with the

above inequalities forces the variable sk and rk to achieve its upper and lower bound, respectively.

In (7.21), the ratio rk/sk ≤ uk together with sk > 0 can be reformulated as a quadratic



128

inequality of DC type

s2
k + u2

k + 2rk − (sk + uk)
2 ≤ 0, (7.22)

where both s2
k + u2

k + 2rk and (sk + uk)
2 are convex quadratic functions.

From (7.21) and (7.22), problem (7.20) becomes

minimize 1Tu

subject to s2
k + u2

k + 2rk ≤ (sk + uk)
2, k ∈ [K]

sk −wT
k Skwk − σ2

ς ≤ 0, k ∈ [K]

σ2
εw

T
k Rkwk + σ2

ς ≤ rk, k ∈ [K]

wTQmw ≤ Em, m ∈ [M ]

s > 0,

(7.23a)

(7.23b)

(7.23c)

(7.23d)

(7.23e)

(7.23f)

where the optimization variables are w, u, r and s, r = [r1, r2, . . . , rK ]T , s = [s1, s2, . . . , sK ]T ,

and > denotes elementwise inequality. Note that the quadratic functions of DC type in (7.23b) and

(7.23c) bring in the nonconvexity of problem (7.23). In what follows, we will show that CCP is a

suitable convex restriction approach for solving this problem.

Convex restriction

Problem (7.23) is convex except for the nonconvex quadratic constraints (7.23b) and (7.23c), which

have the DC form

f(v)− g(v) ≤ 0, (7.24)

where both f and g are convex functions. In (7.23b), we have f(sk, uk, rk) = s2
k + u2

k + 2rk, and

g(sk, uk) = (sk + uk)
2. In (7.23c), f(sk) = sk, and g(wk) = wT

k Skwk + σ2
ς .
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We can convexify (7.24) by linearizing g around a feasible point v̂,

f(v)− ĝ(v) ≤ 0, (7.25)

where ĝ(v) := g(v̂)+(v− v̂)T ∂g(v̂)
∂v

, ∂g(v̂)
∂v

is the first-order derivative of g at the point v̂. In (7.25),

ĝ is an affine lower bound on the convex function g, and therefore, the set of v that satisfy (7.25)

is a strict subset of the set of v that satisfy (7.24). This implies that a solution of the optimization

problem with the linearized constraint (7.25) is locally optimal for the problem with the original

nonconvex constraint (7.24).

We can obtain a ‘restricted’ convex version of problem (7.23) by linearizing (7.23b) and (7.23c)

as (7.25). We then solve a sequence of convex programs with iteratively updated linearization

points. The use of linearization to convexify nonconvex problems with DC type functions is known

as CCP [102, 103]. At each iteration of CCP, we solve

minimize 1Tu

subject to s2
k + u2

k + 2rk − ĝ1(sk, uk) ≤ 0, k ∈ [K]

sk − ĝ2(wk) ≤ 0, k ∈ [K]

σ2
εw

T
k Rkwk + σ2

ς ≤ rk, k ∈ [K]

wTQmw ≤ Em, m ∈ [M ]

s > 0,

(7.26)

where the optimization variables are w, u, r, and s, ĝ1 and ĝ2 are affine approximations of (sk+uk)
2

and wT
k Skwk + σ2

ς , namely, ĝ1(sk, uk) := 2(sk + uk)(ŝk + ûk) − (ŝk + ûk)
2, and ĝ2(wk) :=

2ŵT
k Skwk − ŵT

k Skŵk + σ2
ς .

The convergence of CCP is guaranteed, since at each iteration, we solve a restricted convex

problem with a smaller feasible set which contains the linearization point (i.e., the solution after

the previous iteration) [103]. In other words, for a given linearization point, we always obtain a

new feasible point with a lower or equal objective value at each iteration.
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The computation cost of CCP is dominated by the solution of the convex program with quadratic

constraints. This has the computational complexity O(a3 + a2b) in the use of interior-point algo-

rithm [104, Chapter. 10], where a and b denote the number of optimization variables and con-

straints, respectively. In problem (7.26), we have a = 3K + KL and b = 4K + M . Therefore,

the complexity of our algorithm is roughly given by O(L3) per iteration. Here we focus on the

scenario in which the number of collaboration links L is much larger than K or M .

7.5 Sensor collaboration for estimation of correlated param-

eters

Different from (7.14), the presence of temporal correlation makes finding the solution of (7.19)

more challenging. However, we show that (7.19) can be cast as an SDP with a (nonconvex) rank-

one constraint. Spurred by the problem structure, we employ a penalty CCP to solve (7.19), and

propose a fast optimization algorithm by using ADMM.

Equivalent optimization problem

From (7.18), problem (7.19) can be equivalently transformed to

minimize tr(V)

subject to P−1
w � V−1

wTQmw ≤ Em, m ∈ [M ]

Uk = wkw
T
k , k ∈ [K],

(7.27)

where V ∈ SK and Uk ∈ SL are newly introduced optimization variables for k ∈ [K], Sn rep-

resents the set of n × n symmetric matrices, and the notation X � Y (or X � Y) indicates

that X −Y (or Y −X) is positive semidefinite. The first inequality constraint of problem (7.27)

is obtained from Pw � V, where Pw is given by (7.18), and P−1
w represents Bayesian Fisher
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information corresponding to LMMSE.

We further introduce a new vector of optimization variables p = [p1, . . . , pK ]T such that the

first matrix inequality of problem (7.27) is expressed as

C− diag(p) � V−1, (7.28)

pk ≥ σ−2
ε hTk

(
I + σ2

εσ
−2
ς GT

kUkGk

)−1
hk, k ∈ [K], (7.29)

where we use the expression of Pw given by (7.18), and the fact that Uk = wkw
T
k . Note that the

minimization of tr(V) with inequalities (7.28) and (7.29) would force the variable pk to achieve

its lower bound. In other words, problem (7.27) is equivalent to the problem in which the first

inequality constraint of (7.27) is replaced by the above two inequalities.

By employing the Schur complement, we can express (7.28) and (7.29) as LMIs

C− diag(p) I

I V

 � 0,

 pk σ−1
ε hTk

σ−1
ε hk I + σ2

εσ
−2
ς GT

kUkGk

 � 0, k ∈ [K]. (7.30)

Replacing the first inequality of problem (7.27) with LMIs (7.30), we obtain an SDP together

with a (nonconvex) rank-one constraint Uk = wkw
T
k . This nonconvex constraint can be recast as

two inequalities

Uk −wkw
T
k � 0, Uk −wkw

T
k � 0, k ∈ [K]. (7.31)

According to the Schur complement, the first matrix inequality is equivalent to an LMI

Uk wk

wT
k 1

 � 0, k ∈ [K]. (7.32)

And the second inequality in (7.31) involves a function of DC type, where Uk and wkw
T
k are

matrix convex functions [59].
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From (7.30) – (7.32), problem (7.27) or (7.19) is equivalent to

minimize tr(V)

subject to wTQmw ≤ Em, m ∈ [M ]

LMIs in (7.30)

LMIs in (7.32)

Uk −wkw
T
k � 0, k ∈ [K],

(7.33a)

(7.33b)

(7.33c)

(7.33d)

(7.33e)

where the optimization variables are w, p, V and Uk for k ∈ [K], and (7.33e) is a nonconvex

constraint of DC type.

Convexification

Proceeding with the same logic as in the previous section to convexify the constraint (7.24), we

linearize (7.33e) around a point ŵk,

Uk − ŵkw
T
k −wkŵ

T
k + ŵkŵ

T
k � 0, k ∈ [K]. (7.34)

It is straightforward to apply CCP to solve problem (7.33) by replacing (7.33e) with (7.34). How-

ever, such an approach fails in practice. This is not surprising, since the feasible set determined by

(7.33d) and (7.34) only contains the linearization point. Specifically, from (7.33d) and (7.34), we

obtain

(wk − ŵk)(wk − ŵk)
T = wkw

T
k − ŵkw

T
k −wkŵ

T
k + ŵkŵ

T
k

�Uk − ŵkw
T
k −wkŵ

T
k + ŵkŵ

T
k � 0, (7.35)

which indicates that wk = ŵk. Therefore, CCP gets trapped in a linearization point.

Remark 4. Dropping the nonconvex constraint (7.33e) is another method to convexify problem
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(7.33), known as semidefinite relaxation [63]. However, such an approach makes the optimization

variable Uk unbounded, since the minimization of tr(V) forces Uk to be as large as possible such

that the variable pk in (7.29) is as small as possible.

In order to circumvent the drawback of the standard CCP, we consider its penalized version,

known as penalty CCP [103], where we add new variables to allow for constraints (7.34) to be

violated and penalize the sum of the violations in the objective function. As a result, the convexi-

fication (7.34) is modified by

Uk − ŵkw
T
k −wkŵ

T
k + ŵkŵ

T
k � Zk, k ∈ [K], (7.36)

where Zk ∈ SL is a newly introduced variable. The constraint (7.36) implicitly adds the additional

constraint Zk � 0 due to Uk � wkwk from (7.33d).

After replacing (7.33e) with (7.36), we obtain the SDP,

minimize tr(V) + τ
K∑
k=1

tr(Zk)

subject to (7.33b) – (7.33d) and (7.36)

(7.37)

where the optimization variables are w, p, V, Uk and Zk for k ∈ [K], and τ > 0 is a penalty

parameter. Compared to the standard CCP, problem (7.37) is optimized over a larger feasible set

since we allow for constraints to be violated by adding variables Zk for k ∈ [K]. We summarize

the use of penalty CCP to solve (7.19) in Algorithm 7.1.

In Algorithm 7.1, the initial point ŵ is randomly picked from a standard uniform distribution.

Note that ŵ is not necessarily feasible for (7.19) since violations of constraints are allowed. We

also remark that when τ = τmax, penalty CCP reduces to CCP, and therefore, its convergence is

guaranteed [103].

The computation cost of Algorithm 7.1 is dominated by the solution of the SDP (7.37) at Step 2.

This leads to the complexity O(a2b2 + ab3) by using the interior-point alogrithm in off-the-shelf
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solvers [104, Chapter. 11], where a and b are the number of optimization variables and the size

of the semidefinite matrix, respectively. In (7.37), the number of optimization variables is pro-

portional to L2. Therefore, the complexity of Algorithm 7.1 is roughly given by O(L6). Clearly,

computing solutions to SDPs becomes inefficient for problems of medium or large size. In what

follows, we will develop an ADMM-based algorithm that is more amenable to large-scale opti-

mization.

Algorithm 7.1 Penalty CCP for solving (7.19)

Require: an initial point ŵ, εccp > 0, τ 0 > 0, τmax > 0 and µ > 1.
1: for iteration t = 1, 2, . . . do
2: solve problem (7.37) for its solution wt via SDP solver or ADMM-based algorithm
3: update the linearization point, ŵ = wt

4: update the penalty parameter τ t = min{µτ t−1, τmax}
5: let ψt be the objective value of (7.37)
6: until |ψt − ψt−1| ≤ εccp with t ≥ 2.
7: end for

Fast algorithm via ADMM

It has been shown in [60, 93, 107, 108] that ADMM is a powerful tool for solving large-scale

optimization problems. The major advantage of ADMM is that it allows us to split the original

problem into subproblems, each of which can be solved more efficiently or even analytically. In

what follows, we will employ ADMM to solve problem (7.37).

We begin by reformulating problem (7.37) in a way that lends itself to the application of

ADMM. We introduce slack variables λm ∈ RKL+1 for m ∈ [M ] to rewrite (7.33b) as an equality

constraint together with a second-order cone constraint,

Q̄mw − λm + cm = 0, ‖[λm]1:KL‖2 ≤ [λm]KL+1, (7.38)

where Q̄m := [Q
1
2
m,0]T , Q

1
2
m is the square root of Qm given by the matrix decomposition Qm =

(Q
1
2
m)TQ

1
2
m, cm = [0T ,

√
Em]T , and [a]1:n denotes a subvector of a that consists of its first n entries.
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We further introduce slack variables Λ1 ∈ S2K , Λ2,k ∈ SN+1, Λ3,k ∈ SL+1 and Λ4,k ∈ SL

for k ∈ [K] to rewrite LMIs of problem (7.37) as a sequence of equality constraints together with

positive semidefinite cone constraints

C− diag(p) I

I V

−Λ1 = 0 (7.39)

 pk σ−1
ε hTk

σ−1
ε hk I + σ2

εσ
−2
ς GT

kUkGk

−Λ2,k = 0 (7.40)

Uk wk

wT
k 1

−Λ3,k = 0 (7.41)

Zk −Uk + ŵkw
T
k + wkŵ

T
k − ŵkŵ

T
k −Λ4,k = 0, (7.42)

where Λ1 � 0, Λ2,k � 0, Λ3,k � 0, and Λ4,k � 0 for k ∈ [K]. From (7.38) – (7.42), problem

(7.37) becomes

minimize tr(V) + τ
K∑
k=1

tr(Zk) +
M∑
m=1

I0(λm) + I1(Λ1) +
4∑
i=2

K∑
k=1

Ii(Λi,k)

subject to equality constraints in (7.38) – (7.42),

(7.43)

where the optimization variables are w, p, V, Uk, Zk, λm, Λ1, and {Λi,k}i=2,3,4 for m ∈ [M ] and

k ∈ [K], and Ii is the indicator function specified by

I0(λm) =

 0, if ‖[λm]1:KL‖2 ≤ [λm]KL+1

∞ otherwise,
I1(Λ1) =

 0, if Λ1 � 0

∞ otherwise,

Ii(Λi,k) =

 0, if Λi,k � 0

∞ otherwise,
i = 2, 3, 4.

It is clear from problem (7.43) that the introduced indicator functions helps to isolate the second-
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order cone and positive semidefinite cone constraints with respect to slack variables.

Problem (7.43) is now in a form suitable for the application of ADMM. The corresponding

augmented Lagrangian [60] in ADMM is given by

Lρ(X ,Z ,Y ) = tr(V) + τ

K∑
k=1

tr(Zk) +
M∑
m=1

I0(λm) + I1(Λ1) +
4∑
i=2

K∑
k=1

Ii(Λi,k)

+
M∑
m=1

πTmfm(X ,Z ) +
ρ

2

M∑
m=1

‖fm(X ,Z )‖2
2 + tr

(
ΠT

1 F1(X ,Z )
)

+
ρ

2
‖F1(X ,Z )‖2

F +
4∑
i=2

K∑
k=1

tr
(
ΠT
i,kFi,k(X ,Z )

)
+
ρ

2

4∑
i=2

K∑
k=1

‖Fi,k(X ,Z )‖2
F , (7.44)

where X denotes the set of primal variables w, p, V, Uk and Zk for k ∈ [K], Z denotes the

set of primal slack variables λm, Λ1 and {Λi,k}i=2,3,4 for m ∈ [M ] and k ∈ [K], Y is the set of

dual variables (also known as Lagrangian multipliers) πm, Π1 and {Πi,k}i=2,3,4 for m ∈ [M ] and

k ∈ [K], fm(·), F1(·), and Fi,k(·) for i ∈ {2, 3, 4} represent linear functions at the left hand side of

equality constraints in (7.38) – (7.42), ρ > 0 is a regularization parameter, and ‖ · ‖F denotes the

Frobenius norm of a matrix.

We iteratively execute the following three steps for ADMM iteration t = 0, 1, . . .

X t+1 = arg min
X

L(X ,Z t,Y t) (7.45)

Z t+1 = arg min
Z

L(X t+1,Z ,Y t) (7.46)
πt+1
m = πtm + ρ fm(X t+1,Z t+1), ∀m

Πt+1
1 = Πt

1 + ρF1(X t+1,Z t+1)

Πt+1
i,k = Πt

i,k + ρFi,k(X t+1,Z t+1), ∀i, k,

(7.47)

until both of the conditions ‖X t+1 −Z t‖F ≤ εadmm and ‖Z t+1 −Z t‖F ≤ εadmm are satisfied,

where with an abuse of notation, ‖X ‖F denotes the sum of Frobenius norms of variables in X ,
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and εadmm is a stopping tolerance.

The rationale behind using ADMM is that we can split the original problem into the X -

minimization step (7.45) and Z -minimization step (7.46), of which the former can be treated

as an unconstrained quadratic program and the latter renders an analytical solution.

X -minimization step

Completing the squares with respect to primal variables in the augmented Lagrangian (7.44), prob-

lem (7.45) can be cast as

minimize ϕ(w,p,V, {Uk}, {Zk}) := tr(V) + τ
K∑
k=1

tr(Zk) +
ρ

2

M∑
m=1

∥∥Q̄mw −αm
∥∥2

2

+
ρ

2

∥∥∥∥∥∥∥
C− diag(p) I

I V

−Υ1

∥∥∥∥∥∥∥
2

F

+
ρ

2

K∑
k=1

∥∥∥∥∥∥∥
Uk wk

wT
k 1

−Υ3,k

∥∥∥∥∥∥∥
2

F

+
ρ

2

K∑
k=1

∥∥∥∥∥∥∥
 pk σ−1

ε hTk

σ−1
ε hk I + σ2

εσ
−2
ς GT

kUkGk

−Υ2,k

∥∥∥∥∥∥∥
2

F

+
ρ

2

K∑
k=1

∥∥Zk −Uk + ŵkw
T
k + wkŵ

T
k − ŵkŵ

T
k −Υ4,k

∥∥2

F
(7.48)

where αm := λm − cm − (1/ρ)πm for m ∈ [M ], Υ1 := Λ1 − (1/ρ)Π1, and Υi,k := Λi,k −

(1/ρ)Πi,k for i ∈ {2, 3, 4} and k ∈ [K], and for simplicity, we have omitted the ADMM iteration

index t in the primal slack variables and dual variables.

We note that problem (7.48) is an unconstrained quadratic program (UQP). In what follows, we

employ a gradient descent method [59] together with a backtracking line search [59, Chapter 9.2]

to solve this UQP. The first order method yields low computational complexity and memory re-

quirement at each iteration. In Proposition 7.2, we show the gradient of the objective function of

problem (7.48).
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Proposition 7.2. The gradient of the objective function of problem (7.48) is given by

∇wϕ = ρ
∑M

m=1 Q̄T
m(Q̄mw −αm) + 2ρ(w − γ3) + 2ρ blkdiag{ŵkw

T
k + wkŵ

T
k −Hk}Kk=1ŵ

∇pϕ = ρ diag (C− diag(p)−Υ11
1 ) + ρ(p− γ2)

∇Vϕ = I + ρ(V −Υ22
1 )

∇Uk
ϕ = ρσ2

εσ
−2
ς Gk(I + σ2

εσ
−2
ς GT

kUkGk −Υ22
2,k)G

T
k + ρ(2Uk −Υ11

3,k − Zk −Tk), k ∈ [K]

∇Zkϕ = τI + ρ(Zk −Uk + Tk), k ∈ [K],

where γ3 = [γT3,1, . . . ,γ
T
3,K ]T , γ3,k is the (L + 1) column of Υ3,k after the last entry is removed,

Hk := Uk − Zk + ŵkŵ
T
k + Υ4,k, ŵ = [ŵT

1 , . . . , ŵ
T
K ]T , Υ11

1 is a submatrix of Υ1 that contains

its first K rows and columns, γ2 = [γ2,1, . . . , γ2,K ]T , γ2,k is the first element of Υ2,k, diag(·)

returns the diagonal entries of its matrix argument in vector form, Υ22
1 is a submatrix of Υ1 after

the first K rows and columns are removed, Υ22
2,k is a submatrix of Υ2,k after the first row and

column are removed, Υ11
3,k is a submatrix of Υ3,k after the last row and column are removed, and

Tk := ŵkw
T
k + wkŵ

T
k − ŵkŵ

T
k −Υ4,k.

Proof: See Appendix A.18. �

In Proposition 7.2, we note that the optimal value of V is achieved by letting ∇Vϕ = 0. This

leads to

V = Υ22
1 − (1/ρ)I. (7.49)

To solve problem (7.48) for other variables, we employ the gradient descent method summarized

in Algorithm 7.2. This algorithm calls on the backtracking line search (Algorithm 7.3) to prop-

erly determine the step size such that the convergence to a stationary point of problem (7.48) is

accelerated.
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Algorithm 7.2 Gradient descent method for solving UQP (7.48)

Require: values of w, p, {Uk} and {Zk} at the previous ADMM iteration, εgrad > 0, and V given
by (7.49)

1: repeat
2: compute the gradient of φ following Proposition 7.2
3: compute cgrad :=

∑K
k=1 ‖∇Uk

ϕ‖2
F + ‖∇wϕ‖2

2 +‖∇pϕ‖2
2 +

∑K
k=1 ‖∇Zkϕ‖2

F

4: call Algorithm 7.3 to determine a step size κ
5: update variables

w := w + κ∇wϕ, p := p + κ∇pϕ
Uk := Uk + κ∇Uk

ϕ, Zk := Zk + κ∇Zkϕ

6: until cgrad ≤ εgrad.

Algorithm 7.3 Backtracking line search for choosing κ

1: Given κ := 1, a1 ∈ (0, 0.5), a2 ∈ (0, 1), and cgrad

2: repeat
3: κ := a2κ,
4: let ϕ̂ be the value of ϕ at the points w + κ∇wϕ, p + κ∇pϕ, V, Uk + κ∇Uk

ϕ, and
Zk + κ∇Zkϕ

5: until ϕ̂ < ϕ(w,p,V, {Uk}, {Zk})− a1κ cgrad.

Z -minimization step

From the expressions of the augmented Lagrangian and indicator functions, problem (7.46) can be

decomposed into a sequence of subproblems with respect to slack variables in Z , respectively.

Completing the squares with respect to λm in (7.44), problem (7.46) together with (7.38) yields

the subproblem

minimize ‖λm − βm‖2
2

subject to ‖[λm]1:KL‖2 ≤ [λm]KL+1,
(7.50)

where βm := Q̄mw + cm + (1/ρ)πm, and for notational simplicity, we have omitted the ADMM

iteration index t. The solution of problem (7.50) is achieved by projecting βm onto a second-order
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cone [93, Sec. 6.3],

λm =


0 ‖[βm]1:KL‖2 ≤ −[βm]KL+1

βm ‖[βm]1:KL‖2 ≤ [βm]KL+1

β̃m ‖[βm]1:KL‖2 ≥ |[βm]KL+1|,

(7.51)

for m ∈ [M ], where

β̃m :=
1

2

(
1 +

[βm]KL+1

‖[βm]1:KL‖2

)[
[βm]T1:KL, ‖[βm]1:KL‖2

]T
.

Completing the squares with respect to Λ1 in (7.44), problem (7.46) together with (7.39) yields

the subproblem

minimize ‖Λ1 −Φ1‖2
F

subject to Λ1 � 0,
Φ1 :=

C− diag(p) I

I V

+ (1/ρ)Π1. (7.52)

The solution of problem (7.52) is given by [93, Sec. 6.3]

Λ1 =
2K∑
i=1

(σi)+ωiω
T
i , (7.53)

where
∑2K

i=1 σiωiω
T
i is the eigenvalue decomposition of Φ1, and (·)+ is the positive part operator.

Completing the squares with respect to Λi,k for i ∈ {2, 3, 4} and k ∈ [K] in (7.44), problem

(7.46) yields a sequence of subproblems similar to (7.52). The resulting solution is the same as

(7.53) except that Φ1 is replaced with one of the following matrices

Φ2,k :=

 pk σ−1
ε hTk

σ−1
ε hk I + σ2

εσ
−2
ς GT

kUkGk

+ 1
ρ
Π2,k, Φ3,k :=

Uk wk

wT
k 1

+ 1
ρ
Π3,k

Φ4,k := Zk −Uk + ŵkw
T
k + wkŵ

T
k − ŵkŵ

T
k + 1

ρ
Π4,k.
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Summary of the proposed ADMM algorithm

We initialize the ADMM algorithm by setting w0 = 1, p0 = 1, V0 = I, U0
k = Z0

k = I for

k ∈ [K], λ0
m = π0

m = 0 for m ∈ [M ], Λ0
1 = Π0

1 = 0, and Λ0
i,k = Π0

i,k = 0 for i ∈ {2, 3, 4, }

and k ∈ [K]. The ADMM algorithm proceeds as (7.45) – (7.47). The convergence of ADMM

is guaranteed in solving convex problems [60], and it typically takes a few tens of iterations to

converge with satisfactory accuracy.

At each iteration of ADMM, the computational complexity of the X -minimization step is

approximated by O(L4), where O(L) roughly counts for the number of iterations of the gradi-

ent descent method, and O(L3) is the complexity of matrix multiplication while computing the

gradient. Here we assume that L is much larger than K and N . In Z -minimization step, the com-

putational complexity is dominated by the eigenvalue decomposition used in (7.53). This leads to

the complexity O(L3.5). As a result, the total computation cost of the ADMM algorithm is given

by O(L4). For additional perspective, we compare the computational complexity of the ADMM

algorithm with the interior-point algorithm that takes complexity O(L6). Clearly, the complexity

of ADMM decreases significantly in terms of the number of collaboration links by a factor L2.

7.6 Numerical results

This section empirically shows the effectiveness of our approach for sensor collaboration in time-

varying sensor networks. We assume that θk follows a Ornstein-Uhlenbeck process [45] with

correlation cov(θk1 , θk2) = σ2
θe
−|k1−k2|/ρcorr for k1 ∈ [K] and k2 ∈ [K], where ρcorr is a parameter

that governs the correlation strength, namely, a larger (or smaller) ρcorr corresponds to a weaker
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(or stronger) correlation. The covariance matrix of θ is given by

Σθ = σ2
θ



1 e−ρcorr · · · e−(K−1)ρcorr

e−ρcorr 1 · · · e−(K−2)ρcorr

...
... . . . ...

e−(K−1)ρcorr e−(K−2)ρcorr · · · 1


.

where unless specified otherwise, we set σ2
θ = 1 and ρcorr = 0.5. The spatial placement and

neighborhood structure of the sensor network is modeled by a random geometric graph [48],

RGG(N, d), where N = 10 sensors are randomly deployed over a unit square and bidirectional

communication links are possible only for pairwise distances at most d. Clearly, the adjacency

matrix A is determined by RGG(N, d), and the number of collaboration links increases as d in-

creases. In our numerical examples unless specified otherwise, we set d = 0.3 which leads to

RGG(10, 0.3) shown in Fig. 7.2.
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Fig. 7.2: RGG(10, 0.3), collaboration is depicted for sensors 3, 6 and 9.

In the collaborative estimation system, we assume that M = 10, K = 3, σ2
ε = σ2

ς = 1, and

Em = Etotal/M for m ∈ [M ], where Etotal = 1 gives the total energy budget of M sensors. For
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simplicity, the obverstion gain hk and channel gain gk are randomly chosen from the uniform dis-

tribution U(0.1, 1). Moreover, we select τ 0 = 0.1, µ = 1.5, τmax = 100 in penalty CCP, a1 = 0.02

and a2 = 0.5 in backtracking line search and εccp = εadmm = εgrad = 10−3 for the stopping tol-

erance of the proposed algorithms. Unless specified otherwise, the ADMM algorithm is adopted

at Step 2 of penalty CCP, and we use CVX [94] for all other computations. The estimation per-

formance is measured through the empirical mean squared error (MSE), which is computed over

1000 numerical trials.
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Fig. 7.3: Convergence of CCP and penalty CCP for different initial points.

In Fig. 7.3, we present convergence trajectories of CCP and penalty CCP as functions of in-

teration index for 10 different initial points. For comparison, we plot the worst objective function

value of collaboration problem (7.7) when w = 0, namely, LMMSE is determined only by the

prior information, which leads to the worst estimation error tr(Σθ) = K = 3. As we can see,

much of the benefit of using CCP or penalty CCP is gained during the first few iterations. And

each algorithm converges to almost the same objective function value for different initial points.

Compared to CCP, the convergence trajectory of penalty CCP is not monotonically decreasing.

Namely, penalty CCP is not a descent algorithm. The non-monotonicity of penalty CCP is caused

by the penalization on the violation of constraints in the objective function. The objective func-

tion value of penalty CCP converges until the penalization ceases to change significantly (after 15
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iterations in this example).

In Fig. 7.4, we present the trace of error covariance matrix PW given by (7.6) as a function of

the correlation parameter ρcorr, where the sensor collaboration scheme is obtained from CCP and

penalty CCP to solve (7.14) and (7.19), respectively. We observe that the estimation error resulting

from the solution of (7.14) remains unchanged for different values of ρcorr since the formulation

of (7.14) is independent of the prior knowledge about parameter correlation. The estimation error

resulting from the solution of (7.19) increases as ρcorr increases, and it eventually converges to the

error resulting from the solution of (7.14) at an extremely large ρcorr, where parameters become

uncorrelated. This is not surprising, since the prior information about parameter correlation was

taken into account in (7.19), thereby significantly improving the estimation performance.
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Fig. 7.4: Estimation error versus correlation parameter ρcorr.

In Fig. 7.5, we present the MSE of collaborative estimation as a function of the total energy

budget Etotal for ρcorr = 0.5. For comparison, we plot the estimation performance when using

a time-invariant collaboration scheme to solve (7.14) and (7.19), respectively. The assumption

of time-invariant collaboration implicitly adds the additional constraint w1 = . . . = wK , which

reduces the problem size. By fixing the type of algorithm, we observe that the MSE when using
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Fig. 7.5: MSE versus total energy budget.

time-invariant sensor collaboration is larger than that of the originally proposed algorithm. This is

because the latter accounts for temporal dynamics of the network, where observation and channel

gains vary in time. Moreover, the solution of (7.19) yields lower MSE than that of (7.14). This

result is consistent with Fig. 3.3 for a fixed correlation parameter. Lastly, the estimation error is

smaller as more energy is used in sensor collaboration.

In Fig. 7.6, we present the MSE and the number of collaboration links as functions of the

collaboration radius d for ρcorr = 0.5 and Etotal = 1. We note that the estimation accuracy

improves as d increases, since a larger value of d corresponds to more collaboration links in the

network. For a fixed value of d, the MSE when solving (7.19) is lower than that when solving

(7.14), since the latter ignores the information about parameter correlation. Moreover, we observe

that the MSE tends to saturate beyond a collaboration radius d ≈ 0.7. This indicates that a large

part of the performance improvement is achieved only through partial collaboration.

In Fig. 7.7, we present the computation time of our algorithms as functions of problem size

specified in terms of the number of collaboration links L. For comparison, we plot the compu-

tation time of penalty CCP when using an interior-point solver in CVX [94]. As we can see,



146

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
1

2

3

M
S

E

Collaboration radius, d

 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0

50

100

N
o.

 o
f c

ol
la

bo
ra

tio
n 

lin
ks

CCP, uncorrelated parameters
Penalty CCP, correlated parameters
No. of collaboration links

Fig. 7.6: MSE and collaboration links versus collaboration radius d.

penalty CCP requires much higher computation time than CCP, since the former requires solutions

of SDPs. When L is small, we observe that the ADMM based penalty CCP has a higher compu-

tation time than when using the interior-point solver. This is because the gradient descent method

in ADMM takes relatively more iterations (compared to small L) to converge with satisfactory ac-

curacy. However, the ADMM based algorithm performs much faster for a relatively large problem

with L > 60.

7.7 Summary

In this chapter, we studied the problem of sensor collaboration for estimation of time-varying pa-

rameters in dynamic sensor networks. Based on prior knowledge about parameter correlation,

the resulting sensor collaboration problem was solved for estimation of temporally uncorrelated

and correlated parameters. In the case of temporally uncorrelated parameters, we showed that the

sensor collaboration problem can be cast as a special nonconvex optimization problem, where a

difference of convex functions carries all the nonconvexity. By exploiting problem structure, we
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solved the problem by using a convex-concave procedure, which renders a near optimal solution

evidenced by numerical results. In the case of correlated parameters, we showed that the sensor

collaboration problem can be converted into a semidefinite program together with a nonconvex

rank-one constraint. Spurred by the problem structure, we employed a semidefinite programming

based penalty convex-concave procedure to solve the sensor collaboration problem. We further

proposed an ADMM-based algorithm that is more scalable to large-scale optimization. We em-

pirically showed the effectiveness of our approach for sensor collaboration in dynamic sensor net-

works. In the next chapter, we will study the problem of collaborative estimation with energy

harvesting sensors.
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CHAPTER 8

SENSOR COLLABORATION WITH ENERGY

HARVESTING SENSORS

8.1 Introduction

In the previous chapters, sensors were assumed to be equipped with conventional power-limited

batteries. There have been significant advances in the design of energy-harvesting sensors. Thus, it

becomes quite attractive to study collaborative estimation problems in sensor networks with energy

harvesting nodes, where at each time step sensors can replenish energy from the environment (such

as solar and wind) without the need of battery replacement.

Different from the work [51–53] on distributed estimation with energy harvesting sensors, here

we present a unified optimization framework for the joint design of optimal energy allocation

and storage control polices while incorporating the cost of sensor collaboration. We show that

the resulting optimization problem is nonconvex. However, by identifying the special types of

nonconvexities, the methods of convex relaxation and convex-concave procedure can be effectively

used to find locally optimal solutions. Extensive numerical results are provided to demonstrate the

utility of our approach for energy allocation and storage control in collaborative estimation.

The rest of the chapter is organized as follows. In Section 8.2, we the collaborative estimation
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system with energy harvesting sensors. In Section 8.3, we show that the problem of energy alloca-

tion and storage control can be addressed as a special nonconvex problem, where the nonconvexity

sources can be isolated to constraints that contain the difference of convex functions and the `0

norm. In Section 8.4, we present the optimization approach for determining the optimal energy

allocation and storage control policies. In Section 8.5, we show the effectiveness of our approach

via numerical examples. We summarize our work in Section 8.6.

8.2 Problem statement

System model

The task of the sensor network is to estimate a time-varying parameter θt ∈ R over a time horizon

of length T . We consider a collaborative estimation system where sensors are able to collaborate,

namely, share observations with other neighboring sensors. The obtained collaborative messages

are transmitted through a coherent MAC to the FC, which produces a global estimate of θt for

t = 1, 2, . . . , T . In the network, each sensor is equipped with an energy harvesting device and

a finite-capacity energy storage device, where the former harvests the renewable energy from the

environment, and the latter governs the storage charging/discharging actions across time for sensor

collaboration and data transmission. An overview of the collaborative estimation system with

energy harvesting and storage is shown in Fig. 8.1.

The vector of measurements from N sensors at time t is

xt = htθt + εt, t ∈ [T ], (8.1)

where [T ] denotes the integer set {1, 2, . . . , T}, xt = [xt,1, . . . , xt,N ]T is the vector of measure-

ments, ht = [ht,1, . . . , ht,N ]T is the vector of observation gains, θt is the parameter of interest

which has zero mean and variance σ2
θ , εt = [εt,1, . . . , εt,N ]T is the noise vector with i.i.d. Gaussian

variables εt,i ∼ N (0, σ2
ε ) for t ∈ [T ] and i ∈ [N ].
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Fig. 8.1: Collaborative estimation with energy harvesting and storage. θt and θ̂t denote
the parameter and its estimate at time t, respectively. xt, zt and yt denote the sensor mea-
surements, collaborative signals and transmitted signal, respectively. En,t and sn,t are the
harvested energy (known in advance) and stored energy (to be designed) of the nth sensor at
time t.

After linear sensing, each sensor may pass its observation to another sensor for collaboration

prior to transmission to the FC. With a relabelling of the sensors, we assume that the firstM sensors

(out of a total of N sensor nodes) communicate with the FC. The process of sensor collaboration

at time t is

zt = Wtxt, t ∈ [T ] (8.2)

where zt = [zt,1, zt,2, . . . , zt,M ]T is the vector of collaborative signals, and Wt ∈ RM×N is the

collaboration matrix that contains collaboration weights (based on the energy allocated) used to

combine sensor measurements.

After sensor collaboration, the message zt is transmitted through a coherent MAC so that the

received signal yt at the FC is a coherent sum [30]

yt = gTt zt + ςt, t ∈ [T ], (8.3)

where gt = [gt,1,, gt,2, . . . , gt,M ]T is the vector of channel gains, and ςt is temporally white Gaussian

noise with zero mean and variance σ2
ς .
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Best linear unbiased estimator (BLUE)

We assume that the FC knows the observation gains, channel gains, and variances of the parameters

of interest and additive noises. We employ BLUE [58, Theorem 6.1] to estimate the parameters

θt for t ∈ [T ]. The use of BLUE is spurred by the lack of prior knowledge about the temporal

correlation of time-varying parameters {θt} [46]. As shown in Appendix A.19, the estimation

error resulting from BLUE is given by a sum of rational functions with respect to collaboration

matrices

f(W1, . . . ,WT ) =
T∑
t=1

σ2
ς + σ2

ε tr
(
WT

t gtg
T
t Wt

)
tr (WT

t gtgTt WththTt )
. (8.4)

Collaboration and transmission costs

It is clear from (8.2) that the sparsity structure of Wt characterizes the collaboration topology

at time t. For instance, [Wt]mn = 0 indicates the absence of a collaboration link from the nth

sensor to the mth sensor, where [Wt]mn is the (m,n)th entry of Wt. To account for an active

collaboration link, we use the cardinality function

card([Wt]mn) =

 0 [Wt]mn = 0

1 [Wt]mn 6= 0.
(8.5)

The collaboration cost of each sensor is then given by

Qn(Wt) =
M∑
m=1

Cmncard([Wt]mn), n ∈ [N ], t ∈ [T ], (8.6)

where we assume that sharing of an observation is realized through a reliable (noiseless) com-

munication link that consumes a known power Cmn. Note that Cmm = 0 since each node can

collaborate with itself at no cost.

The transmission cost of the mth sensor at time t refers to the energy consumption of transmit-
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ting the collaborative message zt,m to the FC. Namely,

Tm(Wt) = Eθt,εt [z2
t,m] = tr

[
WT

t emeTmWt(σ
2
θhth

T
t + σ2

ε I)
]
, (8.7)

for m ∈ [M ] and t ∈ [T ], where em ∈ RM is a basis vector with 1 at the mth coordinate and

0s elsewhere. Since only the first M sensors are used to communicate with the FC, we define

Tn(Wt) := 0 for n > M ,

Energy harvesting and storage constraints

We assume that knowledge of the harvested energy is available in advance (also known as full

side information [109]). Let En,t denote the harvested energy of the nth sensor at time t, which

is used for storage or sensor collaboration and data transmission. We introduce a variable sn,t to

represent the charging/discharging operation of the storage device at the nth sensor at time t, with

the following sign convention for sn,t

 sn,t ≥ 0 charging with amount of energy sn,t,

sn,t < 0 discharging with amount of energy −sn,t.
(8.8)

Given the harvested energy En,t and the operating mode of the storage device, the energy

consumption for sensor collaboration and data transmission satisfies the constraint

Qn(Wt) + Tn(Wt) ≤ En,t − sn,t, n ∈ [N ], t ∈ [T ] (8.9)

where Qn(Wt) is the collaboration cost in (8.6), Tn(Wt) is the transmission cost in (8.7), and the

quantity En,t − sn,t stands for the amount of energy available at the nth sensor at time t.

The stored energy at each sensor per time satisfies

−
t−1∑
k=0

sn,k ≤ sn,t ≤ En,t, n ∈ [N ], t ∈ [T ], (8.10)
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where sn,0 ≥ 0 is the known amount of initially stored energy at the nth sensor,
∑t−1

k=0 sn,k is the

amount of stored energy at time t − 1 which might be discharged from the storage device at the

next time, and En,t is the amount of harvested energy at time t which can be used to charge the

storage device.

There is a capacity limit of the storage device [110], denoted by Ŝ, so that

t∑
k=0

sn,k ≤ Ŝ, n ∈ [N ], t ∈ [T ]. (8.11)

To increase the network lifetime, it is also desirable to have some remaining stored energy, denoted

by Š, at the end of time horizon. This gives the following constraint [111]

T∑
k=0

sn,k ≥ Š, n ∈ [N ]. (8.12)

Sensor collaboration with energy storage management

In order to seek the optimal collaboration schemes {Wt} and storage control policy {sn,t}, we

formulate the optimization problem, in which the estimation error (8.4) is minimized subject to

energy constraints (8.9) – (8.12),

minimize f(W1, . . . ,WT )

subject to constraints (8.9) – (8.12),
(8.13)

where the optimization variables are Wt ∈ RM×N and st = [s1,t, s2,t, . . . , sN,t]
T for t ∈ [T ]. As

will be evident later, problem (8.13) is not convex due to its objective function and the constraint

(8.9) that involves the cardinality function. We will elaborate on the problem structure in the next

section.
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8.3 Insights into nonconvexity

In this section, we first simplify problem (8.13) by converting quadratic matrix functions into

quadratic vector functions. We then show that problem (8.13) is equivalent to an optimization

problem with special types of nonconvexities.

It is clear from (8.4) and (8.7) that both the estimation distortion and the transmission cost

contain a quadratic matrix function. For simplicity of representation, we transform a quadratic

matrix function into a quadratic vector function by concatenating the entries of a matrix into a

column vector.

Specifically, a columnwise vector wt of the collaboration matrix Wt can be written as wt =

[wt,1, wt,2, . . . , wt,L]T , where L = MN , wt,l is the lth entry of wt, wt,l = [Wt]mlnl , ml = l −

(d l
M
e − 1)M , nl = d l

M
e, and dxe is the ceiling function that yields the smallest integer not less

than x.

Using the relationship between the Kronecker product and the vectorization of a matrix1, we

can rewrite the matrix quadratic functions in (8.4) and (8.7) as

f(w1, . . . ,wT ) =
T∑
t=1

σ2
ς + σ2

εw
T
t ΩPN,twt

wT
t ΩPD,t

, and (8.14)

Tn(wt) =

 wT
t Γm,twt n ∈ [M ],

0 n = m+ 1, . . . , N,
(8.15)

where with an abuse of notation, we used f and Tn introduced in (8.4) and (8.7) to represent the

estimation distortion and tranmission cost with respect to {wt}, ΩPN,t = IN ⊗ (gtg
T
t ), ΩPD,t =

(hth
T
t ) ⊗ (gtg

T
t ), and Γm,t = (σ2

θhth
T
t + σ2

ε I) ⊗ (emeTm). Clearly, the matrices ΩPN,t, ΩPD,t and

Γm,t are positive semidefinite, and in particular ΩPD,t is of rank one.

1For appropriate matrices A, B, C and D, we obtain tr(ATBCDT ) = vec(A)T (D ⊗ B)vec(C), where ⊗
denotes the Kronecker product, and vec(Z) is the columnwise vector of Z.
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Moreover, we express the collaboration cost (8.6) as

Qn(wt) =
M∑
m=1

cm+(n−1)M card(wt,m+(n−1)M) (8.16)

for n ∈ [N ] and t ∈ [T ], where ci denotes the ith entry of the columnwise vector of the collabora-

tion cost matrix C ∈ RM×N , whose (m,n)th entry is given by Cmn in (8.6).

Based on (8.15) and (8.16), the energy consumption constraint (8.9) can be cast as a quadratic

inequality that involves the cardinality function with respect to wt,

Qn(wt) + Tn(wt) ≤ En,t − sn,t, n ∈ [N ], t ∈ [T ]. (8.17)

Problem (8.13) is further written as

minimize f(w1, . . . ,wT )

subject to storage constraints (8.10) – (8.12)

energy consumption constraint (8.17),

(8.18)

where wt ∈ RL and st ∈ RN are optimization variables for t ∈ [T ], and we recall that L = MN .

Proposition 8.1. Problem (8.18) is equivalent to

minimize 1Tu (8.19a)

subject to storage constraints (8.10) – (8.12) (8.19b)

energy consumption constraint (8.17) (8.19c)

σ2
ς + σ2

εw
T
t ΩPN,twt ≤ pt, qt > 0, t ∈ [T ] (8.19d)

2pt + (q2
t + u2

t )− (qt + ut)
2 ≤ 0, t ∈ [T ] (8.19e)

qt −wT
t ΩPD,twt ≤ 0, t ∈ [T ], (8.19f)

where u ∈ RT , p ∈ RT , q ∈ RT , wt ∈ RL and st ∈ RN are optimization variables for t ∈ [T ],



156

and 1 is the vector of all ones.

Proof: See Appendix A.20. �

It is clear from (8.19) that there exist two sources of nonconvexity: a) the cardinality function

in the collaboration cost (8.16), b) the difference of convex (DC) quadratic functions (8.19e) and

(8.19f). In what follows, we will show that the difficulties caused by the cardinality function and

the nonconvex function of DC type can be efficiently handled via certain convexifications.

8.4 Optimization approach

Problem (8.19) is combinatorial in nature due to the presence of the cardinality function (also

known as `0 norm). In the sparsity-promoting optimization context [112], an `0 norm is commonly

relaxed to an `1 norm. Based on that, the collaboration cost (8.16) is approximated as

Q̃n(wt) := ‖Cnwt‖1, n ∈ [N ], t ∈ [T ], (8.20)

where Cn=[c1+(n−1)Me1+(n−1)M , . . . , cnMenM ]T∈RM×L, and ei ∈ RL is a basis vector. Accord-

ingly, an `1 proxy for the energy consumption constraint (8.17) is given by

Q̃n(wt) + Tn(wt) ≤ En,t − sn,t, n ∈ [N ], t ∈ [T ]. (8.21)

We remark that the `1 norm given by (8.20) can be eliminated by introducing additional opti-

mization variables so that the `1 constraint (8.21) is cast as a smooth convex constraint together

with a linear inequality constraint [59]

1T rn,t + Tn(wt) ≤ En,t − sn,t, − rn,t ≤ Cnwt ≤ rn,t, n ∈ [N ], t ∈ [T ], (8.22)

where rn,t ∈ RM is the newly introduced optimization variable for n ∈ [N ] and t ∈ [T ], and the

linear inequality is defined in an elementwise fashion.
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After `1 approximation, problem (8.19) becomes convex except for the nonconvex quadratic

constraints (8.19e) and (8.19f). However, we will show that such a nonconvex optimization prob-

lem can be efficiently solved via a convex-concave procedure.

The nonconvex quadratic constraints (8.19e) – (8.19f) have the DC type. Proceeding with the

same logic as used in Section 6.6, we employ CCP to solve the convexified problem

minimize 1Tu

subject to storage constraints (8.10) – (8.12)

energy consumption constraints (8.22)

quadratic constraints (8.19d)

linearized quadratic constraints (8.19e) – (8.19f):

2pt + (q2
t + u2

t ) ≤ ψ̂1(qt, ut), and

qt ≤ ψ̂2(wt), t ∈ [T ],

(8.23)

where u ∈ RT , p ∈ RT , q ∈ RT , wt ∈ RL, st ∈ RN , and rn,t ∈ RM are optimization variables

for n ∈ [N ] and t ∈ [T ], ψ1(qt, ut) := 2(ut + qt)(ût + q̂t)− (ût + q̂t)
2, (ût, q̂t) is the linearization

point used in ψ̂1, ψ̂2(wt) = 2wT
t ΩPD,tŵt − ŵT

t ΩPD,tŵt, and ŵt is the linearization point used in

ψ̂2. We summarize CCP for solving problem (8.19) in Algorithm 8.1.

For simplicity, we randomly choose the initial points (drawn from the standard uniform dis-

tribution) that are scaled to satisfy the constraints of problem (8.19). It is worth mentioning that

reference [103] has proposed a penalized version of CCP which allows the use of infeasible initial

points. Our numerical examples show that Algorithm 8.1 works effectively and converges to almost

the same optimal value for different initial points; see Fig. 8.2. The convergence of Algorithm 8.1

is also guaranteed, since at each iteration, we solve a linearized convex problem with a smaller

feasible set which contains the linearization point (i.e., the solution at the previous iteration) [103].

The computation cost of Algorithm 8.1 is dominated by the solution of a convex program

with quadratic constraints at Step 2, which has the computational complexity O(T 3.5L3.5) via the
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Algorithm 8.1 CCP for solving problem (8.19)

Require: εccp > 0 and feasible initial points {ŵt}, q̂ and û
1: for iteration i = 1, 2, . . . do
2: set ({wi

t},qi,ui) as the solution of problem (8.23)
3: update the linearizing point: ŵt = wi

t, q̂ = qi, û = ui

4: until |1Tui − 1Tui−1| ≤ εccp for i ≥ 2
5: end for

interior-point algorithm [104, Sec. 10], where recalling that T is the length of time horizon, and

L = NM is the maxinum number of collaboration links.

8.5 Numerical results
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Fig. 8.2: Convergence of CCP for 5 different initial points.

In this section, we empirically show the effectiveness of the proposed energy allocation and

storage algorithm. To specify the system model in Fig. 8.1, we assume that N = 5 sensors are

deployed in a unit square region, and let T = 10, M = 5, and σ2
θ = σ2

ε = σ2
ς = 1. The values of

observation gains ht and channel gains gt are drawn from the uniform distribution U(0.1, 1). The
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amount of energy harvesting En,t satisfies a Poisson process [52], namely, prob{En,t = mµ0} =

λme−λ

m!
for n ∈ [N ] and t ∈ [T ], where µ0 = 1 is the average energy harvesting rate, and λ = 5.

The initial energy in the storage device is set by sn,0 = 0 for n ∈ [N ]. The capacity limit and the

desired residual energy in the storage device are given by Ŝ = 100 and Š = 0.2
∑T

t=1

∑N
n=1

En,t
TN ,

respectively. The cost of establishing a collaboration link is modeled by Cmn = αc‖am − an‖2

for m,n ∈ [N ], where ai is the location of the ith sensor, and αc = 1 is the collaboration cost

parameter. In CCP, we select εccp = 10−3.
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Fig. 8.3: Energy consumption and storage at the first sensor.

In Fig. 8.2, we present the convergence trajectory of CCP as a function of iteration index for

5 different initial points. As we can see, much of the benefit of using CCP is gained from its first

few iterations. Moreover, CCP converges to almost the same objective value for different initial

points. That is because the linearization of nonconvex quadratic functions, which have rank-one

coefficient matrices, e.g, ΩPD,t in (8.23), leads to good proxies of DC type nonconvex functions.

In Fig. 8.3, we show the obtained energy allocation and storage schemes at the first sensor by

solving problem (8.19). We observe that the harvested energy is not wasted, namely, the sum of

consumed energy and stored energy is equal to the amount of the harvested energy at each time
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Fig. 8.4: Estimation error and collaboration links while varying αc.

step. We also note that the storage device operates in a charging mode when there is a large amount

of harvested energy (e.g., at time steps 1, 4 and 6). By contrast, the storage device operates in a

discharging mode when the harvested energy is low and there is a sufficient amount of stored

energy (e.g., at time steps 3, 5 and 8). We finally remark that the energy consumption for sensor

collaboration and data transmission varies in time due to the time-varying sensor network.

In Fig. 8.4, we present the estimation error and the percentage of active collaboration links as

a function of the collaboration cost parameter αc for µ0 ∈ {1, 3, 5}. As we can see, by fixing

the energy harvesting rate µ0, both the estimation accuracy and the number of collaboration links

decrease as αc increases. This is expected, since a larger value of αc corresponds to a larger cost

of sensor collaboration. Moreover, if we fix the value of αc, both the estimation accuracy and

the number of collaboration links increase when the energy harvesting rate increases, since more

energy would be harvested and can be used for sensor collaboration.
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8.6 Summary

In this chapter, we proposed a tractable optimization framework to jointly design optimal energy

allocation and storage control policies for distributed estimation with sensor collaboration. Al-

though the resulting optimization problem is nonconvex in nature, we provided valuable insights

into the sources of nonconvexity: a) cardinality function, and b) difference of convex functions.

Based on the problem structure, the problem was convexified via an `1 relaxation and a convex-

concave procedure, which renders a near-optimal solution as evidenced by our extensive numerical

results.
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CHAPTER 9

CONCLUSION AND FUTURE RESEARCH

DIRECTIONS

9.1 Concluding remarks

Although pervasive sensors are able to collect massive amounts of data, commonly used sensor net-

works only have limited capacity to store, transmit and process the accquired data. Therefore, the

problem of resource management arises in order to achieve optimal trade-offs between inference

accuracy and resource usage. In this thesis, we have addressed two types of resource management

problems: a) sensor selection/scheduling in Chapters 3–5, and b) energy allocation for collabora-

tive estimation in Chapters 6–8, where the former refers to finding the best subset of sensors to

activate in order to minimize the estimation error subject to a constraint on the number of activa-

tions, and the latter refers to seeking the optimal inter-sensor communication strategy prior to the

transmission of sensor measurements to a fusion center. We summarize the main contributions of

the work reported in this thesis as follows.

Chapter 3 was dedicated to optimal sensor selection with correlated measurement noise. In this

chapter, we circumvented drawbacks of the commonly used formulations for sensor selection, and

demonstrated their validity only when sensor selection is restricted to the weak noise correlation
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regime. We proposed a more general and tractable framework for sensor selection with correlated

measurement noise that is valid for any arbitrary noise correlation regime. It was shown that the

proposed sensor selection framework is able to yield a more accurate sensor selection scheme than

those presented in the previous literature.

Chapter 4 addressed the problem of optimal time-periodic sensor schedules for estimating the

state of discrete-time dynamical systems. In this chapter, the sensor scheduling problem was inter-

preted as a design problem in which both the sensor activation schedules, and the estimator gains

used to combine the sensor measurements, are jointly optimized. To allow for additional design

flexibility, we introduced sparsity-promoting penalty functions into the optimization formulation to

encourage fewer measurements at every time instant of the periodic horizon. This helps to generate

arbitrarily sparse sensor schedules that employ a minimal number of active sensors.

Chapter 5 took the individual power constraint of each sensor into account while promoting the

sparsity of sensor schedules. In order to achieve a balance between activating the most informative

sensors and uniformly allocating sensor energy, we proposed a novel sparsity-promoting penalty

function that discourages successive selections of the same group of sensors. We showed the the

resulting optimization is convex, and its optimal solution can be efficiently obtained via ADMM

or a proximal gradient method.

Chapter 6 was dedicated to the design of optimal sensor collaboration schemes for linear co-

herent estimation. In this chapter, we described collaboration through a collaboration matrix, in

which the nonzero entries characterize the collaboration topology and the values of these entries

characterize the collaboration weights. Also, we explored the situation in which there is a cost

associated with the involvement of each sensor in the estimation scheme. In such situations, the

participating sensors must be chosen judiciously. We proposed a sparsity-inducing optimization

framework that jointly designs the optimal sensor selection and collaboration schemes. It was

shown that there exists a trade-off between sensor collaboration and sensor selection for a given

estimation performance.

Chapter 7 addressed the problem of sensor collaboration in the the presence of (a) temporal
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dynamics in system, (b) temporal correlation of parameters, and (c) energy constraints in time. In

this chapter, we proposed a tractable optimization framework for the design of the optimal collab-

oration scheme that accounts for parameter correlation and temporal dynamics of sensor networks.

We provided valuable insights into the problem of sensor collaboration for the estimation of corre-

lated parameters. In order to improve computational efficiency, we proposed a fast algorithm that

scales gracefully with problem size via ADMM.

Chapter 8 addressed the sensor collaboration problem with energy harvesting sensors. In this

chapter, the presence of energy harvesting and storage constraints introduces challenges in problem

formulation and optimization compared to the collaboration problem for estimation with battery-

fixed sensors. Optimal energy allocation and storage control polices were designed under a non-

convex optimization lens.

Despite our contributions in this thesis that advanced the state-of-the-art, the understanding of

resource management problems remains incomplete. In the next section, we will discuss some

interesting research topics that follow directly from this thesis.

9.2 Directions for future research

We conclude this thesis by listing some directions for future research.

• Decentralized sensor selection/scheduling: In order to reduce the computational burden of

the fusion center, developing a decentralized architecture where the optimization procedure

can be carried out in a distributed way and by the sensors themselves becomes quite interest-

ing. For the problem of sensor selection with correlated noise, the presence of the positive

semidefinite constraint restricts the implementation of sensor selection algorithms in a dis-

tributed fashion. Some potential ideas may include a) the use of block coordinate descent

algorithm for solving SDP, and b) replacing the positive semidefinite constraint with other

approximate sub-constraints. Moreover, we feel that a consensus-based formulation might

be useful in the design of decentralized sensor scheduling framework.
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• Sensor collaboration with imperfect communications: It will be worthwhile to extend the

collaborative estimation model to include collaboration noise, collaboration link failures,

and quantized communication. These conditions make the problem more realistic and prac-

tical since sensor collaboration may suffer from environmental noises, packet loss in wireless

digital communications my cause links to fail intermittently, and sensors may have a limited

bit budget for communication. The question of interest is whether or not sensor collabora-

tion can improve the estimation performance in the presence of imperfect communications

compared to the conventional amplify-and-forward transmission strategy.

• Causality of energy harvesting in sensor collaboration: In the thesis, we have assumed that

full knowledge about the harvested energy is known in advance. Instead of using non-causal

information, it will be interesting to incorporate causality of energy harvesting in sensor

collaboration. Causality introduces inherent temporal dynamics of sensor collaboration and

energy storage. Meanwhile, the stability of sensor collaboration over an infinite time horizon

could be investigated. The steady state of sensor collaboration will enable the use of an

offline protocol in energy management.

• Hardware helping resource management implementation: At a higher level, previous re-

search efforts in resource management protocols focus on theoretical foundations and software-

based solvers of optimal sensor scheduling and energy allocation. However, performing the

software-based algorithms on voluminous data sets suffer from limited scalability due to the

relatively high memory requirement and computational complexity, which thereby limits the

applicability of resource management solutions on big data problems. It has recently been

found that a crossbar array of memristor devices (known as memristor crossbar) exhibits a

unique type of parallelism and can be utilized to solve systems of linear equations with an

astonishing O(1) time complexity. Therefore, it will be interesting to study resource man-

agement problems from the aspects of novel computing hardware architecture and paradigm

such that the mathematical programming solvers are accelarated and scalability is enhanced.
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APPENDIX A

APPENDIX

A.1 Proof of Proposition 3.1

Problem (3.11) can be equivalently transformed to

minimize
w,Z

tr (Z)

subject to C−BT (S−1 + a−1 diag(w))
−1

B � Z−1,

1Tw ≤ s, w ∈ {0, 1}m,

(A.1)

where Z ∈ Sn is an auxiliary variable, and the first inequality constraint is obtained from (C −

BT (S−1 + a−1 diag(w))−1B)
−1 � Z, which implicitly adds the additional constraint Z � 0,

since the left hand side of the above inequality is the inverse of the Fisher information matrix.

We further introduce another auxiliary variable V ∈ Sn such that the first matrix inequality of

(A.1) is expressed as

C−V � Z−1, and V � BT
(
S−1 + a−1 diag(w)

)−1
B. (A.2)

Note that the minimization of tr(Z) with inequalities in (A.2) would force the variable V to achieve

its lower bound. In other words, problem (A.1) is equivalent to the problem in which the inequality
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constraint in (A.1) is replaced by the two inequalities in (A.2). According to the Schur complement,

the inequalities in (A.2) can be then cast as the following linear matrix inequalities (LMIs)

C−V I

I Z

 � 0,

V BT

B S−1 + a−1 diag(w)

 � 0. (A.3)

Substituting (A.3) into (A.1), the sensor selection problem becomes

minimize
w,Z,V

tr (Z)

subject to LMIs in (A.3), 1Tw ≤ s, w ∈ {0, 1}m.
(A.4)

The Boolean constraint on the entries of w can be enforced by diag(wwT ) = w, where diag(·)

returns in vector form the diagonal entries of its matrix argument. By introducing an auxiliary

variable W together with the rank-one constraint W = wwT , the energy and Boolean constraints

in (A.4) can be expressed as

tr(W) ≤ s, diag(W) = w, W = wwT . (A.5)

Combining (A.4) and (A.5), we obtain problem 3.12. The proof is now complete. �



168

A.2 Proof of Proposition 3.2

Given the sensor selection scheme w̃, it is clear from (3.5) that Fisher information can be written

as

Jw̃ = Σ−1+ [HT
w,hj]R

−1
v

Hw

hTj

 , Rw̃ :=

Rw rj

rTj rjj

 (A.6)

where Hw := ΦwH.

If w 6= 0, the inverse of Rw̃ in (A.6) is given by

R−1
w̃ = cj

cj−1R−1
w + R−1

w rjr
T
j R−1

w −R−1
w rj

−rTj R−1
w 1

 (A.7)

where cj := 1/(rjj − rTj R−1
w rj), and cj > 0 following from the Schur complement of Rw̃. Substi-

tuting (A.7) into (A.6), we obtain

Jw̃ = Jw + cjαjα
T
j , (A.8)

where Jw = Σ−1 + HT
wR−1

w Hw as indicated by (3.5), and αj := HT
wR−1

w rj − hj .

If w = 0, namely, Jw = Σ−1, we can immediately obtain from (A.6) that

Jw̃ = Jw +
1

rjj
hTj hj. (A.9)

Equations (A.8) and (A.9) imply that Jw̃ − Jw � 0 since cj > 0.

We apply the matrix inversion lemma to (A.8). This yields J−1
w̃ = [Jw + cjαjα

T
j ]−1 =

J−1
w −

cjJ
−1
w αjα

T
j J

−1
w

1+cjαjJ
−1
w αj

. The improvement in estimation error is then given by tr(J−1
w ) − tr(J−1

w̃ ) =

cjα
T
j J

−2
w αj

1+cjαjJ
−1
w αj

.. The proof is now complete. �
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A.3 Proof of Proposition 3.3

According to (3.15), we obtain

R−1
w =(ΦwRΦT

w)−1 = (ΦwΛΦT
w + εΦwΥΦT

w)−1

(1)
=(I + εΦwΛ−1ΦT

wΦwΥΦT
w)−1ΦwΛ−1ΦT

w

(2)
=(I− εΦwΛ−1ΦT

wΦwΥΦT
w)ΦwΛ−1ΦT

w +O(ε2) (as ε→ 0)

(3)
=ΦwΛ−1ΦT

w − εΦwΛ−1DwΥDwΛ−1ΦT
w +O(ε2) (as ε→ 0), (A.10)

where Dw := diag(w). In (A.10), step (1) holds since we use the facts that Λ is a diagonal

matrix and (ΦwΛΦT
w)−1 = ΦwΛ−1ΦT

w; step (2) is obtained from the Taylor series expansion

(I + εX)−1 =
∑∞

i=0(−εX)i as ε → 0 (namely, the spectrum of εX is contained inside the open

unit disk); step (3) is true since ΦT
wΦw = Dw as in (3.4).

Substituting (A.10) into (3.5), we obtain

Jw =Σ−1 + HTΦT
wΦwΛ−1ΦT

wΦwH− εHTΦT
wΦwΛ−1DwΥDwΛ−1ΦT

wΦwH +O(ε2) (as ε→ 0)

(1)
=Σ−1 + HT (DwΛ−1Dw − εDwΛ−1ΥΛ−1Dw)H +O(ε2) (as ε→ 0)

=Σ−1 + HTDw(Λ−1 − εΛ−1ΥΛ−1)DwH +O(ε2) (as ε→ 0)

(2)
=Σ−1 + HTDwR−1DwH +O(ε2) (as ε→ 0)

(3)
=Σ−1 + HT (wwT ◦R−1)H +O(ε2) (as ε→ 0),

where step (1) is achieved by using the fact that DwΛ−1 = Λ−1Dw = DwΛ−1Dw, step (2) holds

due to R−1 = Λ−1 − εΛ−1ΥΛ−1 + O(ε2), and step (3) is true since Dw is diagonal and has only

binary elements. �
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A.4 Proof of Proposition 3.4

We begin by simplifying the objective function in (P2),

φ(w) := tr(Σ−1) + tr
(
(wwT ◦R−1)(HTH)

)
= tr(Σ−1) +

m∑
i=1

m∑
j=1

wiwjR̄ijh
T
i hj = tr(Σ−1) + wTΩw, (A.11)

where R̄ij is the (i, j)th entry of R−1, and R̄ijh
T
i hj corresponds to the (i, j)th entry of Ω which

yields the succinct form Ω = A(R−1 ⊗ In)AT . Here let ⊗ denote the Kronecker product, A ∈

Rm×mn is a block-diagonal matrix whose diagonal blocks are given by {hTi }mi=1, and Ω � 0 due to

R−1 ⊗ In � 0. According to (A.11), (P2) can be rewritten as

maximize
w

wTΩw

subject to 1Tw ≤ s, w ∈ {0, 1}m.
(A.12)

Next, we prove that problem (3.17) is equivalent to problem (A.12). We recall that the former is

a relaxation of the latter, where the former entails the maximization of a convex quadratic function

over a bounded polyhedron P := {w|1Tw ≤ s,w ∈ [0, 1]m}. It has been shown in [113] that

optimal solutions of such a problem occur at vertices of the polyhedron P , which are zero-one

vectors. This indicates that solutions of problem (3.17) are feasible for problem (A.12). Therefore,

solutions of (3.17) are solutions of (A.12), and vice versa. �
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A.5 Proof of Proposition 4.1

The optimization problem (4.17) is equivalent to

minimize φ({Lk}) =
K−1∑
k=0

tr(Pk) +
ρ

2

K−1∑
k=0

tr[(Lk − Uk)T (Lk − Uk)]

subject to Pk+1 = (A− LkC)Pk(A− LkC)T +BQBT + LkRL
T
k .

(L-Φ)

To find the necessary conditions for optimality, we find the gradient of φ and set ∇Lkφ = 0 for

k = 0, 1, · · · , K − 1.

We begin by assuming an incremental change in the unknown variables {Lk} and finding the

resulting incremental change to the value of the objective. Replacing Lk with Lk + δLk and φ with

φ + δφ in the objective function of (L-Φ) and collecting first order variation terms on both sides,

we obtain

δφ =
K−1∑
k=0

tr(δPk) +
ρ

2

K−1∑
k=0

tr[(Lk − Uk)T δLk + δLTk (Lk − Uk)].

We note that for δLk to constitute a legitimate variation of Lk, it has to satisfy the periodicity

property δLk+K = δLk. Similarly, replacing Lk with Lk + δLk and Pk with Pk + δPk in the

constraint equation of (L-Φ) and collecting first-order variation terms on both sides, we obtain

δPk+1 = (A− LkC)Pk(A− LkC)T + δMk,

where

δMk =− δLkCPk(A− LkC)T − (A− LkC)PkC
T δLTk + δLkRL

T
k + LkRδL

T
k .

The difficulty with finding the gradient of φ from the above equation is the dependence of δφ on

δPk, with the dependence of δPk on δLk being through a Lyapunov recursion. In what follows, we

aim to express
∑K−1

k=0 tr(δPk) in terms of {δLk}.
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It is easy to see that

δPk = δMk−1 +
−∞∑

n=k−1

(A− Lk−1C) · · · (A− LnC)δMn−1(A− LnC)T · · · (A− Lk−1C)T .

Taking the trace of both sides of the equation and summing over k, we have

K−1∑
k=0

tr(δPk) =
K−1∑
k=0

tr(δMk−1) +
K−1∑
k=0

−∞∑
n=k−1

tr[(A− LnC)T · · ·

(A− Lk−1C)T (A− Lk−1C) · · · (A− LnC)δMn−1],

where we have used the property of the trace to change the order of the terms inside the square

brackets. Now exploiting the periodicity properties Lk+K = Lk, δLk+K = δLk, Pk+K = Pk,

which also imply the periodicity δMk+K = δMk of {δMk}, the double sum in the last equation

above can be rewritten to give

K−1∑
k=0

tr(δPk)

=
K−1∑
n=0

tr(δMn−1) +
K−1∑
n=0

+∞∑
k=n+1

tr[(A− LnC)T · · · (A− Lk−1C)T (A− Lk−1C) · · · (A− LnC)δMn−1]

=
K−1∑
n=0

tr{[I +
+∞∑

k=n+1

(A− LnC)T · · · (A− Lk−1C)T I(A− Lk−1C) · · · (A− LnC)]δMn−1}.

To help with the simplification of the above sums, we define the new matrix variable Vn as

Vn = I +
+∞∑

k=n+1

(A− LnC)T · · · (A− Lk−1C)T I(A− Lk−1C) · · · (A− LnC).

It can be seen that {Vn} is periodic, Vn+K = Vn, and satisfies

Vn = (A− LnC)TVn+1(A− LnC) + I.
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Returning to
∑K−1

k=0 tr(δPk) and using the definition of Vn, we obtain

K−1∑
k=0

tr(δPk) =
K−1∑
n=0

tr(VnδMn−1) =
K−1∑
n=0

tr(Vn+1δMn),

where the last equality results from the periodicity of {Vn} and {δMn}. Recalling that δMn can be

written explicity in terms of {δLk}, we have thus achieved our goal of expressing
∑K−1

k=0 tr(δPk)

in terms of {δLk}. We next carry out the last step required to find the gradient of φ.

Replacing
∑K−1

k=0 tr(δPk) with
∑K−1

k=0 tr(Vk+1δMk) in the expression for δφ, and using the

definition of δMk, we obtain

δφ =
K−1∑
k=0

tr(Vk+1δMk) +
ρ

2

K−1∑
k=0

tr[(Lk − Uk)T δLk + δLTk (Lk − Uk)]

= 2
K−1∑
k=0

tr[−CPk(A− LkC)TVk+1δLk +RLTk Vk+1δLk] + ρ
K−1∑
k=0

tr[(Lk − Uk)T δLk],

where we have used the properties of the trace to arrive at the last equality. Thus

∇Lkφ = [−2CPk(A− LkC)TVk+1 +RLTk Vk+1 + ρ(Lk − Uk)T ]T .

Setting∇Lkφ = 0 gives the necessary condition for optimality

0 = −2Vk+1(A− LkC)PkC
T + 2Vk+1LkR + ρ(Lk − Uk),

where Pk and Vk satisfy the recursion euqations

Pk+1 = (A− LkC)Pk(A− LkC)T +BQBT + LkRL
T
k

Vk = (A− LkC)TVk+1(A− LkC) + I.

The proof is now complete. �
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A.6 Proof of Proposition 4.3

Problem (4.24) is equivalent to

minimize ψm(Gm) :=
K−1∑
k=0

γ card
(
‖Gk,m‖2

)
+

K−1∑
k=0

ρ

2
‖Gk,m − Sk,m‖2

2

subject to
K−1∑
k=0

card
(
‖Gk,m‖2

)
= q, q ∈ {0, . . . , η}

where Gm := [G0,m, · · · ,GK−1,m]. Similar to Gm, we form the matrix Sm by picking out

the mth column from each of the matrices in the set {Sk} and stacking them to obtain Sm :=

[S0,m, · · · ,SK−1,m]. We define κ :=
∑K−1

k=0 card
(
‖Sk,m‖2

)
, which gives the column-cardinality of

Sm.

It can be shown that if q = κ then the minimizer Gκ
m of problem (4.24) is Sm, and ψm(Gκ

m) =

γκ. If q > κ, we have ψm(Gm) > ψm(Gκ
m) for arbitrary values of Gm ∈ Fq since ψm(Gm) =

γq+ ρ
2
‖Gm−Sm‖2

F which is greater than ψm(Gκ
m) = γκ. Therefore, the solution of (4.23) is only

determined by solving the sequence of minimization problems (4.24) for q = 0, 1, . . . ,min{η, κ}

rather than q = 0, 1, · · · , η.

For a given q ∈ {0, 1,min{η, κ}}, problem (4.24) can be written as

minimize
Gm

K−1∑
k=0

ρ

2
||Gk,m − Sk,m||22

subject to
K−1∑
k=0

card
(
‖Gk,m‖2

)
= q.

For q = 0, the minimizer Gq
m of the optimization problem is 0. For q 6= 0, it was demonstrated

in [87, Appendix B] that the solution is obtained by projecting the minimizer (Gm = Sm) of the

objective function onto the constraint set
∑K−1

k=0 card
(
‖Gk,m‖2

)
= q. This gives

Gk,m =

 Sk,m ||Sk,m||2 ≥ ||[Sm]q||2

0 ||Sk,m||2 < ||[Sm]q||2
, (A.13)
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for k = 0, 1, · · · , K − 1, where [Sm]q is the qth largest column of Sm in the 2-norm sense. The

proof is now complete. �
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A.7 Proof of Proposition 4.4

According to Prop. 4.3, substituting the minimizer Gq
m of problem (4.24) into its objective function

yields

ψm(Gq
m) =

K−1∑
k=0

ρ

2
‖Gk,m − Sk,m‖2

2 +
K−1∑
k=0

γcard (‖Gk,m‖2) =
K−1∑
k=0
k/∈χq

ρ

2
‖Sk,m‖2

2 + γq,

where Sk,m denotes the mth column of Sk, χq is a set that is composed by indices of the first q

largest columns of Sm (refer to Appendix A.6) in the 2-norm sense, and χ0 = ∅. We have

ψm(Gq
m)− ψm(Gq+1

m ) =
ρ

2
‖[Sm]q+1‖2

2 − γ (A.14)

for q = 0, 1, . . . ,min{η, κ} − 1, where [Sm]q+1 denotes the (q + 1)th largest column of Sm in the

2-norm sense.

Since [Sm]1 ≥ [Sm]2 ≥ · · · ≥ [Sm]min{η,κ}, for γ ∈ (ρ
2
‖[Sm]1‖2

2,∞) equation (A.14) yields

ψm(G0
m) − ψm(G1

m) < 0 and ψm(Gq
m) − ψm(Gq+1

m ) < 0 for other q ∈ {1, . . . ,min{η, κ} − 1}.

Therefore, the minimizer of (4.23) is given by G0
m. Similarly, for γ ∈ (ρ

2
‖[Sm]q+1‖2

2,
ρ
2
‖[Sm]q‖2

2]

equation (A.14) yields ψm(Gl−1
m ) − ψm(Gl

m) ≥ 0 for l = 1, . . . , q, and ψm(Gl
m) − ψm(Gl+1

m ) < 0

for l = q, . . . ,min{η, κ} − 1. Therefore, the minimizer of (4.23) is given by Gq
m. Finally, we

can write the solution of (4.23) in the form given in the statement of Prop. 4.4. The proof is now

complete. �
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A.8 Proof of Proposition 5.1

To prove the convexity of problem (5.10), it is sufficient to study the convexity of the function

gm(w) = p2(w), where p(w) := (
∑K

k=1 ‖wk,m‖2)2, which is a convex function.

Since p(w) is convex, for any two points v, u and θ ∈ [0, 1], we obtain

p2(θv + (1− θ)u) ≤(θp(v) + (1− θ)p(u))2. (A.15)

By comparing the right hand side of (A.15) and the function θgm(v) + (1− θ)gm(u), we have

(θp(v) + (1− θ)p(u))2 − θgm(u)− (1− θ)gm(v)

=θ2p2(v) + (1− θ)2p2(u) + 2θ(1− θ)p(v)p(u)− θp2(v)− (1− θ)p2(u)

=− θ(1− θ)(p(v)− p(u))2 ≤ 0. (A.16)

From (A.15) and (A.16), we obtain

gm(θv + (1− θ)u) ≤ θgm(v) + (1− θ)gm(u),

which proves that the function gm(w) is convex. This proves that the optimization problem (5.10)

is convex. �
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A.9 Proof of Proposition 5.2

Problem (5.20) can be written as

minimize
{uk,m},r

rT11T r +
1

2η̂

K∑
k=1

‖uk,m − ck,m‖2
2

subject to rk = ‖uk,m‖2, k = 1, 2, . . . , K,

(A.17)

where we use {uk,m} instead of {uk,m}k=1,2,...,K for simplicity.

Problem (A.17) can be further transformed to

minimize
r≥0

{
minimize
{‖uk,m‖2=rk}

rT11T r+
1

2η̂

K∑
k=1

‖uk,m − ck,m‖2
2

}
, (A.18)

where the inner minimization problem is with respect to {uk,m}, while the outer is with respect to r.

Note that the equivalence between (A.17) and (A.18) can be verified, proceeding by contradiction

and using the fact that the solution of problem (A.18) is unique.

We first consider the inner minimization problem of (A.18)

minimize
{uk,m}

1

2η̂

K∑
k=1

‖uk,m − ck,m‖2
2

subject to ‖uk,m‖2 = rk, k = 1, 2, . . . , K,

(A.19)

which can be decomposed into K subproblems

minimize
uk,m

1
2η̂
‖uk,m − ck,m‖2

2

subject to ‖uk,m‖2 = rk

(A.20)

for k = 1, 2, . . . , K.

From a geometrical point of view, the minimizer of (A.20) can be interpreted as a point ly-

ing at the surface of Euclidean ball ‖uk,m‖2 ≤ rk such that its distance from a give point ck,m

is minimized. Therefore, the solution of (A.20) is a vector with length rk and direction ck,m
‖ck,m‖2

.
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Furthermore, the solution of (A.19) can be given by u∗k,m = rk
cTk,m
‖cTk,m‖2

for k = 1, 2, . . . , K. Substi-

tuting {u∗k,m} into (A.18), the outer minimization problem becomes QP (5.22). The proof is now

complete. �
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A.10 Proof of Proposition 5.4

Without loss of generality, we assume that f1 ≤ f2 ≤ . . . ≤ fK . Then according to Lemma 5.3,

we have r∗1 ≤ r∗2 ≤ . . . ≤ r∗K for the solution of problem (5.22). Our goal is to find this value of r∗

in a closed-form.

Note that the solution of problem (5.22) is unique since it is strongly convex [59]. Also, the

optimal primal-dual feasible pair (r,ν) is given by KKT conditions of (5.22):

• primal and dual feasibility: r ≥ 0 and ν ≥ 0,

• complementary slackness: riνi = 0 for i = 1, 2, . . . , K,

• stationary condition: r = (I + 2η̂11T )−1(f + η̂ν).

(A.21a)

(A.21b)

(A.21c)

According to (A.21c), we obtain

r =

(
I− 2η̂

1 + 2η̂K
11T

)
(f + η̂ν), (A.22)

where we use the fact that (I + 2η̂11T )(I− 2η̂
1+2Kη̂

11T ) = I.

Now, from (A.21b), consider different cases for the values of optimal dual variable ν. If ν = 0,

we have

ri = fi −
2η̂
∑K

k=1 fk
1 + 2η̂K

, i = 1, 2, . . . , K. (A.23)

According to (A.21a) and (A.21b), we can conclude that r∗ = r only if f1 >
2η̂

∑K
k=1 fk

1+2η̂K
. If

f1 ≤ 2η̂
∑K
k=1 fk

1+2η̂K
, then the solution of (5.22) is not given by (A.23), which yields that the vector of

optimal dual variables ν is not zero. Suppose that νj 6= 0 for some j ∈ {1, 2, . . . , K}, then from

(A.21b), we have r∗j = 0. Recall that 0 ≤ r∗1 ≤ r∗2 ≤ . . . ≤ r∗K , implying that r∗1 = 0. Therefore,

we obtain if f1 ≤ 2η̂
∑K
k=1 fk

1+2η̂K
, r∗1 = 0. In summary, we have the following result.

If f1 >
2η̂

∑K
k=1 fk

1+2η̂K
, then r∗i = fi − 2η̂

∑K
k=1 fk

1+2η̂K
, for i = 1, 2, . . . , K. If f1 ≤ 2η̂

∑K
k=1 fk

1+2η̂K
, then
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r∗1 = 0.

In the aforementioned conclusion, note that the values of r∗i for i = 2, 3 . . . , K have not been

determined when f1 ≤ 2η̂
∑K
k=1 fk

1+2η̂K
. However, they can be found by letting r1 = 0 and solving

problem (5.22) withK−1 variables. Similar to the previous analysis, by exploring KKT conditions

we obtain the following results.

If f1 ≤ 2η̂
∑K
k=1 fk

1+2η̂K
and f2 >

2η̂
∑K
k=2 fk

1+2η̂(K−1)
, then r∗i = fi − 2η̂

∑K
k=2 fk

1+2η̂(K−1)
, for i = 2, 3, . . . , K. If

f1 ≤ 2η̂
∑K
k=1 fk

1+2η̂K
and f2 ≤ 2η̂

∑K
k=2 fk

1+2η̂(K−1)
, then r∗2 = 0.

Continuing further, the solution of (5.22) can be compactly written as

r∗i =


0 1 ≤ i ≤ ι− 1, i ∈ N

fi −
2η̂
∑K

k=ι fk
1 + 2η̂(K − ι+ 1)

ι ≤ i ≤ K, i ∈ N,
(A.24)

for i = 1, 2, . . . , K, where ι is the index of the first positive element in the numbers
{
fi − 2η̂

∑K
k=i fk

1+2η̂(K−i+1)

}
and ι = K + 1 if no positive element exists. The proof is now complete. �



182

A.11 Proof of Proposition 5.5

We denote the optimal solution to (5.25) by {w′k,m,u′k,m} for k = 1, 2, . . . , K andm = 1, 2, . . . ,M .

Our goal is to prove that u′,nk,m = |w′,nk,m| for all k = 1, 2, . . . , K, m = 1, 2, . . . ,M and n =

1, 2, . . . , N , where u′,nk,m and w′,nk,m denote the nth entry of u′k,m and w′k,m, respectively. We prove it

by contradiction. Suppose this is not true, then there exists an index set

S :=
{

(k,m, n)| − u′,nk,m < w′,nk,m < u′,nk,m, (k,m, n) ∈ I
}
,

where I := [K]×[M ]×[N ], [K] := {1, 2, . . . , K}, [M ] := {1, 2, . . . ,M}, and [N ] := {1, 2, . . . , N}.

Now, consider the pair {w∗k,m,u∗k,m} such that

w∗k,m = w′k,m,

u∗,nk,m = u′,nk,m for (k,m, n) /∈ S,

u∗,nk,m = |w′,nk,m| < u′,nk,m for (k,m, n) ∈ S.

(A.25)

It is clear from (5.25) and (A.25) that {w∗k,m,u∗k,m} are feasible points. Also, since S is

not empty, there exists k ∈ [K] and m ∈ [M ] such that 1Tu∗k,m < 1Tu′k,m. Further, we have

(1Tu∗k,m)2 < (1Tu′k,m)2 since unk,m > 0 for any (k,m, n) ∈ I. Therefore, the pair {w∗k,m,u∗k,m}

can yield a smaller objective value of (5.25) than that of {w′k,m,u′k,m}. This contradicts our as-

sumption, in which {w′k,m,u′k,m} is the solution to (5.25). Hence, we can conclude that u′k,m =

|w′k,m| for all k and m. �
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A.12 Quadratic functions transformation

According to [48, Sec. III], it is straightforward to derive the quadratic vector functions (6.16), and

the corresponding coefficient matrices are given by

ΩT = IN ⊗Σx, IN is the N ×N identity matrix, (A.26)

ΩJN = GhhTGT , [G]l,n =

 gml n = nl,

0 otherwise,
(A.27)

ΩJD = G(Σε + η2Σh)G
T+η2HΣgH

T+η2Σg ⊗Σh + Σg ⊗Σε, H = IN ⊗ h, (A.28)

where ⊗ denotes the Kronecker product, Σx is defined in (6.4 ), and (ml, nl) is given by (6.15). It

is clear from (A.26)-(A.28) that ΩT, ΩJN, and ΩJD are all symmetric positive semidefinite matrices,

and ΩJN is of rank one. �
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A.13 Sensor collaboration with fixed topologies

It has been shown in [48] that the sensor collaboration problems with given collaboration topolo-

gies can be solved analytically, since the collaboration costQ(w) =
∑L

l=1 clcard(wl) is a constant,

and (6.17) and (6.18) become problems with homogeneous quadratic functions, in which no linear

terms with respect to w are involved. The solutions of (6.17) and (6.18) for a fully-connected

network are shown in Theorem 1.

Theorem 1 [48, Theorem 1]: For a fully-connected network, the optimal values P̃ and J∗ and

solutions w̃ and w∗ of (6.17) and (6.18) are given by


P̃ = λpos

min

(
ΩT,−ΩJD +

ΩJN

J̌

)
ξ2 + 1Tc

w̃ =

√
P̃ − 1Tc

ṽTΩTṽ
ṽ,

(A.29a)

and


J∗ = λmax

(
ΩJN,ΩJD +

ξ2ΩT

P̂ − 1Tc

)
w∗ =

√
P̂ − 1Tc

(v∗)TΩTv∗
v∗,

(A.29b)

where λpos
min(A,B) and λmax(A,B) denote the minimum positive eigenvalue and the maximum

eigenvalue of the generalized eigenvalue problem Av = λBv, respectively, and ṽ and v∗ are the

corresponding eigenvectors. �

It is clear from (A.29b) that the optimal Fisher information is upper bounded by J0 := λmax(ΩJN,ΩJD)

as P → +∞. This implies that to guarantee the feasibility of (6.17), the information threshold J̌

must lie in the interval [0, J0). Accordingly, the estimation distortion in (6.10) belongs to (D0, η
2],

where D0 = η2/(1 + η2J0) denotes the minimum distortion, and η2 signifies the maximum distor-

tion which is determined by the prior information of θ. We summarize the boundedness of Fisher

information and estimation distortion in Lemma 1.

Lemma 1. For problems (6.17) and (6.18), the values of Fisher information and estimation distor-

tion are bounded as J(w) ∈ [0, J0) andD(w) ∈ (D0, η
2], respectively, where J0 = λmax(ΩJN,ΩJD),
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D0 = η2/(1 + η2J0), and η2 is the variance of the random parameter to be estimated.

For a given J̌ ∈ [0, J0), we demonstrate in Lemma 2 that the matrix J̌ΩJD −ΩJN is not positive

semidefinite.

Lemma 2. Given J̌ ∈ [0, J0), the matrix J̌ΩJD −ΩJN is not positive semidefinite.

Proof: Since J0 = λmax(ΩJN,ΩJD), there exists an eigenvector v0 such that ΩJNv0 = J0ΩJDv0,

which yields vT0 ΩJNv0 = vT0 J0ΩJDv0. Since J̌ ∈ [0, J0), we obtain vT0 ΩJNv0 > vT0 J̌ΩJDv0, namely,

vT0 (J̌ΩJD − ΩJN)v0 < 0. Therefore, we find a vector v0 such that vT0 (J̌ΩJD − ΩJN)v0 < 0. This

implies that J̌ΩJD −ΩJN is not positive semidefinite. �
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A.14 The KKT-based solution for a QP1QC

Consider a more general case of QP1QC

minimize
w

wTA0w + 2bT0 w

subject to wTA1w + 2bT1 w + r1 ≤ 0,
(A.30)

where A0 is a symmetric positive definite matrix, and A1 is a symmetric matrix.

Upon defining P := 1
r1

A
− 1

2
0 A1A

− 1
2

0 , we obtain the eigenvalue decomposition of P

P = UΛUT ,

where U is an orthogonal matrix that includes the eigenvectors of P, and Λ is a diagonal matrix

that includes the eigenvalues of P. Let u := UTA
1
2
0 w, g := UTA

− 1
2

0 b0 and e := UTA
− 1

2
0

b1

r1
, then

problem (A.30) can be written as

minimize
u

uTu + 2uTg

subject to uTΛu + 2uTe + 1 ≤ 0.
(A.31)

The rationale behind using the eigenvalue decomposition technique to reformulate (A.30) is that

the KKT conditions of (A.31) are more compact and easily solved since Λ is a diagonal matrix.

We demonstrate the KKT conditions for problem (A.31).

Primal feasibility: uTΛu + 2uTe + 1 ≤ 0.

Dual feasibility: µ ≥ 0, where µ is the dual variable.

Complementary slackness: µ(uTΛu + 2uTe + 1) = 0.

Stationary of the Lagrangian: u = −(I + µΛ)−1(g + µe).

If µ = 0, we have

u = −g, (A.32)
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where uTΛu + 2uTe + 1 ≤ 0.

If µ > 0, eliminating u by substituting stationary condition into complementary slackness, we

have

(g + µe)T (I + µΛ)−1Λ(I + µΛ)−1(g + µe)− 2(g + µe)T (I + µΛ)−1e + 1 = 0.

Since Λ is a diagonal matrix, we finally obtain that

L∑
l=1

(
λl(µel + gl)

2

(µλl + 1)2
− 2el(µel + gl)

µλl + 1

)
+ 1 = 0, (A.33)

where λl is the lth diagonal element of Λ.

If λl > 0 for l = 1, 2, . . . , L and thus A1 is positive definite, Eq. (A.33) can be simplified as

L∑
l=1

{[√
λl(µel + gl)

1 + µλl
− el√

λl

]2

− e2
l

λl

}
+ 1 =

L∑
l=1

(λlgl − el)2

λl(1 + µλl)2
−

L∑
l=1

e2
l

λl
+ 1 = 0. (A.34)

In (A.34), the function (λlgl−el)2

λl(1+µλl)2 is monotonically decreasing with respect to µ when µ > 0. This

implies that there exists only one positive root for f(µ) = 0 if µ > 0 satisfies the KKT conditions.

Let A0 = Ω̃T, b0 = −ρ
2
a, A1 = J̌ΩJD −ΩJN, b1 = 0 and r1 = J̌ξ2, we can obtain the result in

Proposition 6.1, while let A0 = Ω̃T, b0 = −ρ
2
a, A1 = Ω̃JD, b1 = −β̃ and r1 = γ̃, we obtain the

result in Proposition 6.4.

�
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A.15 Proof of Proposition 6.2

We recall that the eigenvalues {λl}l=1,2,...,L in (6.28) are obtained from the eigenvalue decompo-

sition of the positive definite matrix ΩJD modified by the rank one matrix ΩJN. Then it can be

concluded that there exists only one negative eigenvalue in {λl}l=1,2,...,L [114, Sec. 5].

Without loss of generality, we assume that λ1 < 0 < λ2 ≤ λ3 < . . . < λN , where the case

of λl = 0 (l > 1) is excluded since it is trivial to obtain that λlg
2
l

(µλl+1)2 = 0 in (6.30). Given

− 1
λ1

> 0 > − 1
λL
≥ . . . ≥ − 1

λ3
≥ − 1

λ2
, we have f(− 1

λ1
) → −∞ and f(− 1

λl
) → ∞ for

l = 2, 3, . . . , L.

Next, we take the first-order derivative of f(µ),

df(µ)

dµ
=

L∑
l=1

[−2λ2
l g

2
l (1 + µλl)

−3]. (A.35)

When µ ∈ (0,− 1
λ1

), we have

1 + µλ1 > 0, and 1 + µλl > 0 for i = 2, 3, . . . , L.

From (A.35) we obtain df(µ)
dµ
≤ 0. Therefore, f(µ) is monotonically decreasing as µ ∈ (0,− 1

λ1
).

Together with f(− 1
λ1

)→ −∞ and f(− 1
λL

)→∞, we conclude that there exists only one positive

root of f(µ) = 0 if f(0) > 0. The proof of Lemma 3 is now complete. �

When µ ∈ (− 1
λ1
,∞), we have

1 + µλ1 < 0, and 1 + µλl > 0 for i = 2, 3, . . . , L. (A.36)

It is clear from (A.35) that the sign of df(µ)
dµ

is difficult to determine since −2λ2
1g

2
1(1 + µλ1)−3 >

0 and −2λ2
l g

2
l (1 + µλl)

−3 < 0 for l = 2, 3, . . . , L. Therefore, the function f(µ) may not be

monotonic, and the number of positive roots of f(µ) = 0 is uncertain.
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A.16 Proof of Proposition 6.3

We recall that

J(w) =
wTΩJNw

wTΩJDw + ξ2
,

and

P (w) = wTΩTw +
L∑
l=1

cl card(wl).

Setting w = cŵ for some fixed vector ŵ, J(w) and P (w) are strictly increasing functions of

c when c > 1, and strictly decreasing functions of c when c < 1. Thus, the optimality is achieved

for (6.17) or (6.18) when the inequality constraints are satisfied with equality.

Given the energy budget P̂ , we have P (w2) = P̂ , where w2 is the optimal solution of the

energy constrained problem (6.18). Our goal is to show w2 is also a solution of the information

constrained problem (6.17) when J̌ = J(w2).

If w2 is not the solution of (6.17), we assume a better solution w′2 such that P (w′2) < P (w2).

Since P (·) strictly increases as multiplying the optimization variables by a scalar c > 1, there

exists a scalar c > 1 such that

P (w′2) < P (cw′2) ≤ P (w2). (A.37)

On the other hand, since J(·) strictly increases as multiplying the optimization variables by a

scalar c > 1, we have J(cw′2) > J(w′2). Further, because w′2 is a feasible vector for (6.17), we

have J(w′2) ≥ J̌ , where recalling that J̌ = J(w2). We can then conclude that

J(cw′2) > J(w′2) ≥ J(w2). (A.38)

From (A.37) and P (w2) = P̂ , we obtain that P (cw′2) ≤ P , which implies cw′2 is a feasible

point for (6.18). From (A.38), we have J(cw′2) > J(w2), which implies cw′2 yields a higher

objective value of (6.18) than w2. This contradicts to the fact that w2 is the optimal solution of
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(6.18). Therefore, we can conclude that w2 is the solution of (6.17).

On the other hand, if w1 is the solution of (6.17), it is similar to prove that w1 is the solution

of (6.18) when P̂ = P (w1). The proof is now complete. �
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A.17 Proof of Proposition 6.5

For notational convenience, we define κ1 := 1
ρ
, κ2 := d̃n

ρ
and hκ1

κ2
(vGn) := κ1‖FnvGn‖1 +

κ2‖vGn‖2. Then problem (6.41) can be written as

minimize
vGn

φκ1
κ2

(vGn) := hκ1
κ2

(vGn) + 1
2
‖vGn − bGn‖2

2. (A.39)

Let v∗Gn be the unique minimizer of the following problem

minimize
vGn

h0
κ2

(vGn) + 1
2
‖vGn − ν‖2

2, (A.40)

where ν = sgn(bGn)�max(|bGn| − κ1fGn , 0).

We aim to show v∗Gn is also the minimizer of problem (A.39). The optimality of v∗Gn for

problem (A.40) yields

0 ∈ v∗Gn − ν + ∂h0
κ2

(v∗Gn), (A.41)

where ∂h0
κ2

(·) denotes the subgradient of h0
κ2

(·). We then derive the subgradient of φκ1
κ2

(vGn) at

v∗Gn

∂φκ1
κ2

(v∗Gn) = v∗Gn−bGn +κ1Fnsgn(v∗Gn)+∂h0
κ2

(v∗Gn), (A.42)

where sgn(·) is defined in a component-wise fashion

SGN(x) =


{1} x > 0

[−1, 1] x = 0

{−1} x < 0,

for ∀x ∈ R.
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The definition of ν = sgn(bGn)�max(|bGn| − κ1fGn , 0) implies

νi =


[bGn ]i − κ1 [fGn ]i [bGn ]i > κ1[fGn ]i

0 |[bGn ]i| ≤ κ1 [fGn ]i

[bGn ]i + κ1 [fGn ]i [bGn ]i < −κ1 [fGn ]i ,

(A.43)

where [x]i denotes the ith entry of a vector x.

From (A.43), we have ν ∈ bGn−κ1FnSGN(ν). Since v∗Gn is the minimizer of problem (A.40),

according to [91, Lemma 1], we can obtain that SGN(ν) ⊆ SGN(v∗Gn). Thus,

ν ∈ bGn − κ1FnSGN(v∗Gn). (A.44)

Combining (A.41) and (A.44), we obtain that

0 ∈ v∗Gn − bGn + κ1FnSGN(v∗Gn) + ∂h0
κ2

(v∗Gn),

which implies that 0 ∈ ∂φκ1
κ2

(v∗Gn) from (A.42). Thus, v∗Gn is the minimizer of problem (A.39).

Finally, the closed form of v∗Gn in problem (A.40) is given by a block soft thresholding operator

[93]

v∗Gn =

 (1− κ2

‖ν‖2 )ν ‖ν‖2 ≥ κ2

0 ‖ν‖2 < κ2.

The proof is now complete. �
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A.18 Proof of Proposition 7.2

We begin by collecting terms in ϕ associated with w,

ϕw :=
ρ

2

M∑
m=1

∥∥Q̄mw −αm
∥∥2

2
+ ρ

K∑
k=1

‖wk − γ3,k‖2
2 +

ρ

2

K∑
k=1

‖ŵkw
T
k + wkŵ

T
k −Hk‖2

F , (A.45)

where γ3,k is the (L + 1) column of Υ3,k after the last entry is removed, and Hk := Uk − Zk +

ŵkŵ
T
k + Υ4,k, which is a symmetric matrix.

In (A.45), we assume an incremental change δw in w. Replacing w with w + δw and ϕw with

ϕw + δϕw and collecting first order variation terms on both sides of (A.45), we obtain

δϕw =ρ
M∑
m=1

(Q̄mw −αm)T Q̄mδw + 2ρ(w − γ3)T δw

+ 2ρŵTblkdiag{ŵkw
T
k + wkŵ

T
k −Hk}δw, (A.46)

where γ3 = [γT3,1, . . . ,γ
T
3,K ]T , and ŵ = [ŵT

1 , . . . , ŵ
T
K ]T . It is clear from (A.46) that the gradient

of ϕ with respect to w is given by

∇wϕ =ρ
M∑
m=1

Q̄T
m(Q̄mw −αm) + 2ρ(w − γ3) + 2ρ blkdiag{ŵkw

T
k + wkŵ

T
k −Hk}ŵ. (A.47)

Second, we collect the terms associated with p in ϕ to construct the function

ϕp :=
ρ

2
‖C− diag(p)−Υ11

1 ‖2
F +

ρ

2
‖p− γ2‖2

2, (A.48)

where Υ11
1 is a matrix that consists of the firstK rows and columns of Υ1, and γ2 is a vector whose

kth entry is given by the first entry of Υ2,k for k ∈ [K].

In (A.48), replacing p with p + δp and ϕp with ϕp + δϕp and collecting first order variation
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terms on both sides, we obtain

δϕp = ρ[diag(C− diag(p)−Υ11
1 ) + (p− γ2)]T δp, (A.49)

where diag(·) returns in vector form the diagonal entries of its matrix argument. Therefore, the

gradient of ϕ with respect to p is given by

∇pϕ = ρ diag(C− diag(p)−Υ11
1 ) + ρ(p− γ2). (A.50)

Third, given the terms associated with V in ϕ, the gradient of ϕ with respect to V is readily

cast as

∇Vϕ = I + ρ(V −Υ22
1 ), (A.51)

where Υ22
1 is a submatrix of Υ1 after the first K rows and columns are removed.

Further, we collect the terms in ϕ with respect to the variable Uk, and consider the function

ϕUk
:=

ρ

2

∥∥I + σ2
εσ
−2
ς GT

kUkGk −Υ22
2,k

∥∥2

F
+
ρ

2
‖Uk −Υ11

3,k‖2
F +

ρ

2
‖Uk − Zk −Tk‖2

F , (A.52)

where Υ22
2,k is a submatrix of Υ2,k after the first row and column are removed, Υ11

3,k is a submatrix

of Υ3,k after the last row and column are removed, and Tk := ŵkw
T
k + wkŵ

T
k − ŵkŵ

T
k −Υ4,k.

In (A.52), replacing Uk with Uk + δUk and ϕUk
with ϕUk

+ δϕUk
and collecting first order

variation terms on both sides, we obtain

δϕUk
=
ρσ2

ε

σ2
ς

tr

(
Gk(I +

σ2
ε

σ2
ς

GT
kUkGk −Υ22

2,k)
TGT

k δUk

)
+ ρ tr

((
Uk −Υ11

3,k)
T δUk + (Uk − Zk −Tk

)T
δUk

)
.
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Therefore, the gradient of ϕ with respect to Uk is given by

∇Uk
ϕ =ρσ2

εσ
−2
ς Gk(I + σ2

εσ
−2
ς GT

kUkGk −Υ22
2,k)G

T
k + ρ(Uk −Υ11

3,k) + ρ(Uk − Zk −Tk).

(A.53)

Finally, the gradient of ϕ with respect to Zk is given by

∇Zkϕ = τI + ρ(Zk −Uk + Tk), (A.54)

where Tk is defined in (A.52). We now complete the proof by combining (A.47), (A.50), (A.51),

(A.53) and (A.54). �
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A.19 Estimation distortion of BLUE

According to (8.1), (8.2) and (8.3), the received signals at the FC over T time steps can be written

as the succinct form

y = GwDhθ + υ, (A.55)

where y = [y1, y2, . . . , yT ]T , θ = [θ1, θ2, . . . , θT ]T , υ = [υ1, υ2, . . . , υT ]T , υt = gTt Wtεt +

ςt, Dh = blkdiag{ht}Tt=1, Gw = blkdiag{gTt Wt}Tt=1, and blkdiag{Ai}ni=1 denotes the block-

diagonal matrix with diagonal blocks A1,A2, . . . ,An.

The estimation distortion resulting from BLUE is given by [58, Theorem 6.1]

f({Wt}) := tr
(
DT
hGT

w(σ2
εGwGT

w + σ2
ς I)−1GwDh

)−1

=
T∑
t=1

σ2
ς + σ2

ε tr
(
WT

t gtg
T
t Wt

)
tr (WT

t gtgTt WththTt )
,

where Dυ = E[υυT ] = σ2
εGwGT

w + σ2
ς I. �
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A.20 Proof of Proposition 8.1

We introduce a new vector of optimization variables u = [u1, . . . , uT ]T , and express problem

(8.18) as

minimize 1Tu

subject to
σ2
ς + σ2

εw
T
t ΩPN,twt

wT
t ΩPD,twt

≤ ut, t ∈ [T ],

constraints of (8.18),

(A.56)

where u ∈ RT , wt ∈ RL and st ∈ RN are optimization variables for t ∈ [T ].

By introducing additional variables pt and qt for t ∈ [T ], problem (A.56) can be then rewritten

as

minimize 1Tu

subject to
pt
qt
≤ ut, t ∈ [T ],

σ2
ς + σ2

εw
T
t ΩPN,twt ≤ pt, t ∈ [T ],

wT
t ΩPD,twt ≥ qt, qt > 0, t ∈ [T ],

constraints of (8.18),

(A.57)

where u ∈ RT , p = [p1, . . . , pT ]T ∈ RT , q = [q1, . . . , qT ]T ∈ RT , wt ∈ RL and st ∈ RN

are optimization variables for t ∈ [T ]. Note that the ratio (pt/qt) ≤ ut can be reformulated as a

quadratic constraint given qt > 0,

2pt ≤ (qt + ut)
2 − (q2

t + u2
t ). (A.58)

Substituting (A.58) into (A.57), we eventually reach the optimization problem (8.19). �
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