4,506 research outputs found

    Entropy coder for audio signals

    Get PDF
    In the paper an effective entropy coder designed for coding of prediction errors of audio signals is presented. The coder is implemented inside a greater structure which signal modeling part is a lossless coding backward adaptation algorithm consisting of cascaded OLS and NLMS sections is presented. The technique performance is compared to that of 4 other lossless codecs, including MPEG-4 ALS one, and it is shown that indeed, the new method is the best one. The entropy coder is an advanced context adaptive Golomb one followed by two context adaptive arithmetic coders

    Accurate Light Field Depth Estimation with Superpixel Regularization over Partially Occluded Regions

    Full text link
    Depth estimation is a fundamental problem for light field photography applications. Numerous methods have been proposed in recent years, which either focus on crafting cost terms for more robust matching, or on analyzing the geometry of scene structures embedded in the epipolar-plane images. Significant improvements have been made in terms of overall depth estimation error; however, current state-of-the-art methods still show limitations in handling intricate occluding structures and complex scenes with multiple occlusions. To address these challenging issues, we propose a very effective depth estimation framework which focuses on regularizing the initial label confidence map and edge strength weights. Specifically, we first detect partially occluded boundary regions (POBR) via superpixel based regularization. Series of shrinkage/reinforcement operations are then applied on the label confidence map and edge strength weights over the POBR. We show that after weight manipulations, even a low-complexity weighted least squares model can produce much better depth estimation than state-of-the-art methods in terms of average disparity error rate, occlusion boundary precision-recall rate, and the preservation of intricate visual features

    Vector Lifting Schemes for Stereo Image Coding

    Get PDF
    International audienceMany research efforts have been devoted to the improvement of stereo image coding techniques for storage or transmission. In this paper, we are mainly interested in lossyto- lossless coding schemes for stereo images allowing progressive reconstruction. The most commonly used approaches for stereo compression are based on disparity compensation techniques. The basic principle involved in this technique first consists of estimating the disparity map. Then, one image is considered as a reference and the other is predicted in order to generate a residual image. In this work, we propose a novel approach, based on Vector Lifting Schemes (VLS), which offers the advantage of generating two compact multiresolution representations of the left and the right views. We present two versions of this new scheme. A theoretical analysis of the performance of the considered VLS is also conducted. Experimental results indicate a significant improvement using the proposed structures compared with conventional methods
    corecore