10,592 research outputs found

    Distributed Constrained Recursive Nonlinear Least-Squares Estimation: Algorithms and Asymptotics

    Full text link
    This paper focuses on the problem of recursive nonlinear least squares parameter estimation in multi-agent networks, in which the individual agents observe sequentially over time an independent and identically distributed (i.i.d.) time-series consisting of a nonlinear function of the true but unknown parameter corrupted by noise. A distributed recursive estimator of the \emph{consensus} + \emph{innovations} type, namely CIWNLS\mathcal{CIWNLS}, is proposed, in which the agents update their parameter estimates at each observation sampling epoch in a collaborative way by simultaneously processing the latest locally sensed information~(\emph{innovations}) and the parameter estimates from other agents~(\emph{consensus}) in the local neighborhood conforming to a pre-specified inter-agent communication topology. Under rather weak conditions on the connectivity of the inter-agent communication and a \emph{global observability} criterion, it is shown that at every network agent, the proposed algorithm leads to consistent parameter estimates. Furthermore, under standard smoothness assumptions on the local observation functions, the distributed estimator is shown to yield order-optimal convergence rates, i.e., as far as the order of pathwise convergence is concerned, the local parameter estimates at each agent are as good as the optimal centralized nonlinear least squares estimator which would require access to all the observations across all the agents at all times. In order to benchmark the performance of the proposed distributed CIWNLS\mathcal{CIWNLS} estimator with that of the centralized nonlinear least squares estimator, the asymptotic normality of the estimate sequence is established and the asymptotic covariance of the distributed estimator is evaluated. Finally, simulation results are presented which illustrate and verify the analytical findings.Comment: 28 pages. Initial Submission: Feb. 2016, Revised: July 2016, Accepted: September 2016, To appear in IEEE Transactions on Signal and Information Processing over Networks: Special Issue on Inference and Learning over Network

    Distributed Linear Parameter Estimation: Asymptotically Efficient Adaptive Strategies

    Full text link
    The paper considers the problem of distributed adaptive linear parameter estimation in multi-agent inference networks. Local sensing model information is only partially available at the agents and inter-agent communication is assumed to be unpredictable. The paper develops a generic mixed time-scale stochastic procedure consisting of simultaneous distributed learning and estimation, in which the agents adaptively assess their relative observation quality over time and fuse the innovations accordingly. Under rather weak assumptions on the statistical model and the inter-agent communication, it is shown that, by properly tuning the consensus potential with respect to the innovation potential, the asymptotic information rate loss incurred in the learning process may be made negligible. As such, it is shown that the agent estimates are asymptotically efficient, in that their asymptotic covariance coincides with that of a centralized estimator (the inverse of the centralized Fisher information rate for Gaussian systems) with perfect global model information and having access to all observations at all times. The proof techniques are mainly based on convergence arguments for non-Markovian mixed time scale stochastic approximation procedures. Several approximation results developed in the process are of independent interest.Comment: Submitted to SIAM Journal on Control and Optimization journal. Initial Submission: Sept. 2011. Revised: Aug. 201

    Resilient Autonomous Control of Distributed Multi-agent Systems in Contested Environments

    Full text link
    An autonomous and resilient controller is proposed for leader-follower multi-agent systems under uncertainties and cyber-physical attacks. The leader is assumed non-autonomous with a nonzero control input, which allows changing the team behavior or mission in response to environmental changes. A resilient learning-based control protocol is presented to find optimal solutions to the synchronization problem in the presence of attacks and system dynamic uncertainties. An observer-based distributed H_infinity controller is first designed to prevent propagating the effects of attacks on sensors and actuators throughout the network, as well as to attenuate the effect of these attacks on the compromised agent itself. Non-homogeneous game algebraic Riccati equations are derived to solve the H_infinity optimal synchronization problem and off-policy reinforcement learning is utilized to learn their solution without requiring any knowledge of the agent's dynamics. A trust-confidence based distributed control protocol is then proposed to mitigate attacks that hijack the entire node and attacks on communication links. A confidence value is defined for each agent based solely on its local evidence. The proposed resilient reinforcement learning algorithm employs the confidence value of each agent to indicate the trustworthiness of its own information and broadcast it to its neighbors to put weights on the data they receive from it during and after learning. If the confidence value of an agent is low, it employs a trust mechanism to identify compromised agents and remove the data it receives from them from the learning process. Simulation results are provided to show the effectiveness of the proposed approach

    Resilient Learning-Based Control for Synchronization of Passive Multi-Agent Systems under Attack

    Full text link
    In this paper, we show synchronization for a group of output passive agents that communicate with each other according to an underlying communication graph to achieve a common goal. We propose a distributed event-triggered control framework that will guarantee synchronization and considerably decrease the required communication load on the band-limited network. We define a general Byzantine attack on the event-triggered multi-agent network system and characterize its negative effects on synchronization. The Byzantine agents are capable of intelligently falsifying their data and manipulating the underlying communication graph by altering their respective control feedback weights. We introduce a decentralized detection framework and analyze its steady-state and transient performances. We propose a way of identifying individual Byzantine neighbors and a learning-based method of estimating the attack parameters. Lastly, we propose learning-based control approaches to mitigate the negative effects of the adversarial attack

    Distributed Control of Multi-agent Systems with Unknown Time-varying Gains: A Novel Indirect Framework for Prescribed Performance

    Full text link
    In this paper, a new yet indirect performance guaranteed framework is established to address the distributed tracking control problem for networked uncertain nonlinear strict-feedback systems with unknown time-varying gains under a directed interaction topology. The proposed framework involves two steps: In the first one, a fully distributed robust filter is constructed to estimate the desired trajectory for each agent with guaranteed observation performance that allows the directions among the agents to be non-identical. In the second one, by establishing a novel lemma regarding Nussbaum function, a new adaptive control protocol is developed for each agent based on backstepping technique, which not only steers the output to asymptotically track the corresponding estimated signal with arbitrarily prescribed transient performance, but also largely extends the scope of application since the unknown control gains are allowed to be time-varying and even state-dependent. In such an indirect way, the underlying problem is tackled with the output tracking error converging into an arbitrarily pre-assigned residual set exhibiting an arbitrarily pre-defined convergence rate. Besides, all the internal signals are ensured to be semi-globally ultimately uniformly bounded (SGUUB). Finally, simulation results are provided to illustrate the effectiveness of the co-designed scheme
    • …
    corecore