616 research outputs found

    Development of X-Y Servo Pneumatic-Piezoelectric Hybrid Actuators for Position Control with High Response, Large Stroke and Nanometer Accuracy

    Get PDF
    This study aims to develop a X-Y dual-axial intelligent servo pneumatic-piezoelectric hybrid actuator for position control with high response, large stroke (250 mm, 200 mm) and nanometer accuracy (20 nm). In each axis, the rodless pneumatic actuator serves to position in coarse stroke and the piezoelectric actuator compensates in fine stroke. Thus, the overall control systems of the single axis become a dual-input single-output (DISO) system. Although the rodless pneumatic actuator has relatively larger friction force, it has the advantage of mechanism for multi-axial development. Thus, the X-Y dual-axial positioning system is developed based on the servo pneumatic-piezoelectric hybrid actuator. In addition, the decoupling self-organizing fuzzy sliding mode control is developed as the intelligent control strategies. Finally, the proposed novel intelligent X-Y dual-axial servo pneumatic-piezoelectric hybrid actuators are implemented and verified experimentally

    An Active Disturbance Rejection Control Solution for Electro-Hydraulic Servo Systems

    Get PDF
    The intriguing history of disturbance cancellation control is reviewed in this thesis first, which demonstrates that this unique control concept is both reasonable and practical. One novel form of disturbance cancellation, ADRC (Active Disturbance Rejection Control), attracts much attention because of its good disturbance rejection ability and simplicity in implementation. Hydraulic systems tend to have many disturbances and model uncertainties, giving us a great motivation to find out a good control method. In this thesis, electro-hydraulic servo control problem is reformulated to focus on the core problem of disturbance rejection. An ADRC solution is developed and evaluated against the industry standard solution, with promising result

    Modeling and controller design of an industrial hydraulic actuator system in the presence of friction and internal leakage

    Get PDF
    This paper presents a robust controller scheme and its capabilities to control the position tracking performance of an electro-hydraulic actuator system. Sliding mode control with fixed and varying boundary layer is proposed in the scheme. It is aimed to compensate nonlinearities and uncertainties caused by the presence of friction and internal leakage. Its capabilities are verified through simulations in Matlab Simulink environment. The friction was represented by the LuGre model and the internal leakage was assumed to change. The results indicate that the scheme successfully improves the robustness and the tracking accuracy of the system. This improvement offers a significant contribution in the control of modern equipment positioning applications

    Fuzzy robust nonlinear control approach for electro-hydraulic flight motion simulator

    Get PDF
    AbstractA fuzzy robust nonlinear controller for hydraulic rotary actuators in flight motion simulators is proposed. Compared with other three-order models of hydraulic rotary actuators, the proposed controller based on first-order nonlinear model is more easily applied in practice, whose control law is relatively simple. It not only does not need high-order derivative of desired command, but also does not require the feedback signals of velocity, acceleration and jerk of hydraulic rotary actuators. Another advantage is that it does not rely on any information of friction, inertia force and external disturbing force/torque, which are always difficult to resolve in flight motion simulators. Due to the special composite vane seals of rectangular cross-section and goalpost shape used in hydraulic rotary actuators, the leakage model is more complicated than that of traditional linear hydraulic cylinders. Adaptive multi-input single-output (MISO) fuzzy compensators are introduced to estimate nonlinear uncertain functions about leakage and bulk modulus. Meanwhile, the decomposition of the uncertainties is used to reduce the total number of fuzzy rules. Different from other adaptive fuzzy compensators, a discontinuous projection mapping is employed to guarantee the estimation process to be bounded. Furthermore, with a sufficient number of fuzzy rules, the controller theoretically can guarantee asymptotic tracking performance in the presence of the above uncertainties, which is very important for high-accuracy tracking control of flight motion simulators. Comparative experimental results demonstrate the effectiveness of the proposed algorithm, which can guarantee transient performance and better final accurate tracking in the presence of uncertain nonlinearities and parametric uncertainties

    Modelling of an electro-hydraulic actutor using extended adaptive distance gap statistic approach

    Get PDF
    The existence of high degree of non-linearity in Electro-Hydraulic Actuator (EHA) system has imposed a challenging task in developing its model so that effective control algorithm can be proposed. In general, there are two modelling approaches available for EHA system, which are the dynamic equation modelling method and the system identification modelling method. Both approaches have disadvantages, where the dynamic equation modelling is hard to apply and some parameters are difficult to obtain, while the system identification method is less accurate when the system’s nature is complicated with wide variety of parameters, nonlinearity and uncertainties. This thesis presents a new modelling procedure of an EHA system by using fuzzy approach. Two sets of input variables are obtained, where the first set of variables are selected based on mathematical modelling of the EHA system. The reduction of input dimension is done by the Principal Component Analysis (PCA) method for the second set of input variables. A new gap statistic with a new within-cluster dispersion calculation is proposed by introducing an adaptive distance norm in distance calculation. The new gap statistic applies Gustafson Kessel (GK) clustering algorithm to obtain the optimal number of cluster of each input. GK clustering algorithm also provides the location and characteristic of every cluster detected. The information of input variables, number of clusters, cluster’s locations and characteristics, and fuzzy rules are used to generate initial Fuzzy Inference System (FIS) with Takagi-Sugeno type. The initial FIS is trained using Adaptive Network Fuzzy Inference System (ANFIS) hybrid training algorithm with an identification data set. The ANFIS EHA model and ANFIS PCA model obtained using proposed modelling procedure, have shown the ability to accurately estimate EHA system’s performance at 99.58% and 99.11% best fitting accuracy compared to conventional linear Autoregressive with External Input (ARX) model at 94.97%. The models validation result on different data sets also suggests high accuracy in ANFIS EHA and ANFIS PCA model compared to ARX model

    Third-order robust fuzzy sliding mode tracking control of a double-acting electrohydraulic actuator

    Get PDF
    In the industrial sector, an electrohydraulic actuator (EHA) system is a common technology. This system is often used in applications that demand high force, such as the steel, automotive, and aerospace industries. Furthermore, since most mechanical actuators' performance changes with time, it is considerably more difficult to assure its robustness over time. Therefore, this paper proposed a robust fuzzy sliding mode proportional derivative (FSMCPD) controller. The sliding mode controller (SMC) is accomplished by utilizing the exponential law and the Lyapunov theorem to ensure closed loop stability. By replacing the fuzzy logic control (FLC) function over the signum function, the chattering in the SMC controller has been considerably reduced. By using the sum of absolute errors as the objective function, particle swarm optimization (PSO) was used to optimize the controller parameter gain. The experiment results for trajectory tracking and the robustness test were compared with the sliding mode proportional derivative (SMCPD) controller to demonstrate the performance of the FSMCPD controller. According to the findings of the thorough study, the FSMCPD controller outperforms the SMCPD controller in terms of mean square error (MSE) and robustness index (RI)
    corecore