3,976 research outputs found

    A Frame Work for the Error Analysis of Discontinuous Finite Element Methods for Elliptic Optimal Control Problems and Applications to C0C^0 IP methods

    Full text link
    In this article, an abstract framework for the error analysis of discontinuous Galerkin methods for control constrained optimal control problems is developed. The analysis establishes the best approximation result from a priori analysis point of view and delivers reliable and efficient a posteriori error estimators. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posed ness of the problem. Subsequently, applications of C0C^0 interior penalty methods for a boundary control problem as well as a distributed control problem governed by the biharmonic equation subject to simply supported boundary conditions are discussed through the abstract analysis. Numerical experiments illustrate the theoretical findings. Finally, we also discuss the variational discontinuous discretization method (without discretizing the control) and its corresponding error estimates.Comment: 23 pages, 5 figures, 1 tabl

    Analytic Regularity and GPC Approximation for Control Problems Constrained by Linear Parametric Elliptic and Parabolic PDEs

    Get PDF
    This paper deals with linear-quadratic optimal control problems constrained by a parametric or stochastic elliptic or parabolic PDE. We address the (difficult) case that the state equation depends on a countable number of parameters i.e., on σj\sigma_j with jNj\in\N, and that the PDE operator may depend non-affinely on the parameters. We consider tracking-type functionals and distributed as well as boundary controls. Building on recent results in [CDS1, CDS2], we show that the state and the control are analytic as functions depending on these parameters σj\sigma_j. We establish sparsity of generalized polynomial chaos (gpc) expansions of both, state and control, in terms of the stochastic coordinate sequence σ=(σj)j1\sigma = (\sigma_j)_{j\ge 1} of the random inputs, and prove convergence rates of best NN-term truncations of these expansions. Such truncations are the key for subsequent computations since they do {\em not} assume that the stochastic input data has a finite expansion. In the follow-up paper [KS2], we explain two methods how such best NN-term truncations can practically be computed, by greedy-type algorithms as in [SG, Gi1], or by multilevel Monte-Carlo methods as in [KSS]. The sparsity result allows in conjunction with adaptive wavelet Galerkin schemes for sparse, adaptive tensor discretizations of control problems constrained by linear elliptic and parabolic PDEs developed in [DK, GK, K], see [KS2]
    corecore