17,139 research outputs found

    Adaptive Filtering with Bandwidth Constraints in the Feedback Path

    Get PDF
    Abstract This paper introduces a new, adaptive-filter-based controller that shows advantageous properties from the viewpoint of its communication requirement. The algorithm is called signed-error filtered-x LMS (SE-FxLMS). Its novelty is characterized by the fact that it makes possible data compression in the feedback path of adaptive-filter-based control loops in a very simple way. This feature is especially useful in such closed-loop systems where the feedback signals are transmitted over a low-bandwidth communication channel. This is a typical case in so-called networked control systems (NCS) where the communication is carried out over a shared communication channel, e.g., using a wireless sensor network. The paper introduces an analysis of the algorithm as well

    A technique for improved stability of adaptive feedforward controllers without detailed uncertainty measurements

    Get PDF
    Model errors in adaptive controllers for reduction of broadband noise and vibrations may lead to unstable systems or increased error signals. Previous work has shown that the addition of a low-authority controller that increases damping in the system may lead to improved performance of an adaptive, high-authority controller. Other researchers have suggested to use frequency dependent regularization based on measured uncertainties. In this paper an alternative method is presented that avoids the disadvantages of these methods namely the additional complex hardware, and the need to obtain detailed information of the uncertainties. An analysis is made of an active noise control system in which a difference exists between the secondary path and the model as used in the controller. The real parts of the eigenvalues that determine the stability of the system are expressed in terms of the amount of uncertainty and the singular values of the secondary path. Based on these expressions, modifications of the feedforward control scheme are suggested that aim to improved performance without requiring detailed uncertainty measurements. For an active noise control system in a room it is shown that the technique leads to improved performance in terms of robustness and the amount of reduction of the error signals

    Adaptive design of delta sigma modulators

    Full text link
    In this thesis, a genetic algorithm based on differential evolution (DE) is used to generate delta sigma modulator (DSM) noise transfer functions (NTFs). These NTFs outperform those generated by an iterative approach described by Schreier and implemented in the delsig Matlab toolbox. Several lowpass and bandpass DSMs, as well as DSM\u27s designed specifically for and very low intermediate frequency (VLIF) receivers are designed using the algorithm developed in this thesis and compared to designs made using the delsig toolbox. The NTFs designed using the DE algorithm always have a higher dynamic range and signal to noise ratio than those designed using the delsig toolbox

    Combined MIMO adaptive and decentralized controllers for broadband active noise and vibration control

    Get PDF
    Recent implementations of multiple-input multiple-output adaptive controllers for reduction of broadband noise and vibrations provide considerably improved performance over traditional adaptive algorithms. The most significant performance improvements are in terms of speed of convergence, the \ud amount of reduction, and stability of the algorithm. Nevertheless, if the error in the model of the relevant transfer functions becomes too large then the system may become unstable or lose performance. On-line adaptation of the model is possible in principle but, for rapid changes in the model, necessitates \ud a large amount of additional noise to be injected in the system. It has been known for decades that a combination of high-authority control (HAC) and low-authority control (LAC) could lead to improvements with respect to parametric uncertainties and unmodeled dynamics. In this paper a full digital implementation of such a control system is presented in which the HAC (adaptive MIMO control) is implemented on a CPU and in which the LAC (decentralized control) is implemented on a high-speed Field Programmable Gate Array. Experimental results are given in which it is demonstrated that the HAC/LAC combination leads to performance advantages in terms of stabilization under parametric uncertainties and reduction of the error signal

    Application of adaptive antenna technology to third generation radio architectures

    Get PDF

    Low-Complexity Sub-band Digital Predistortion for Spurious Emission Suppression in Noncontiguous Spectrum Access

    Full text link
    Noncontiguous transmission schemes combined with high power-efficiency requirements pose big challenges for radio transmitter and power amplifier (PA) design and implementation. Due to the nonlinear nature of the PA, severe unwanted emissions can occur, which can potentially interfere with neighboring channel signals or even desensitize the own receiver in frequency division duplexing (FDD) transceivers. In this article, to suppress such unwanted emissions, a low-complexity sub-band DPD solution, specifically tailored for spectrally noncontiguous transmission schemes in low-cost devices, is proposed. The proposed technique aims at mitigating only the selected spurious intermodulation distortion components at the PA output, hence allowing for substantially reduced processing complexity compared to classical linearization solutions. Furthermore, novel decorrelation based parameter learning solutions are also proposed and formulated, which offer reduced computing complexity in parameter estimation as well as the ability to track time-varying features adaptively. Comprehensive simulation and RF measurement results are provided, using a commercial LTE-Advanced mobile PA, to evaluate and validate the effectiveness of the proposed solution in real world scenarios. The obtained results demonstrate that highly efficient spurious component suppression can be obtained using the proposed solutions
    corecore