3,014 research outputs found

    Smile detection in the wild based on transfer learning

    Full text link
    Smile detection from unconstrained facial images is a specialized and challenging problem. As one of the most informative expressions, smiles convey basic underlying emotions, such as happiness and satisfaction, which lead to multiple applications, e.g., human behavior analysis and interactive controlling. Compared to the size of databases for face recognition, far less labeled data is available for training smile detection systems. To leverage the large amount of labeled data from face recognition datasets and to alleviate overfitting on smile detection, an efficient transfer learning-based smile detection approach is proposed in this paper. Unlike previous works which use either hand-engineered features or train deep convolutional networks from scratch, a well-trained deep face recognition model is explored and fine-tuned for smile detection in the wild. Three different models are built as a result of fine-tuning the face recognition model with different inputs, including aligned, unaligned and grayscale images generated from the GENKI-4K dataset. Experiments show that the proposed approach achieves improved state-of-the-art performance. Robustness of the model to noise and blur artifacts is also evaluated in this paper

    Face recognition technologies for evidential evaluation of video traces

    Get PDF
    Human recognition from video traces is an important task in forensic investigations and evidence evaluations. Compared with other biometric traits, face is one of the most popularly used modalities for human recognition due to the fact that its collection is non-intrusive and requires less cooperation from the subjects. Moreover, face images taken at a long distance can still provide reasonable resolution, while most biometric modalities, such as iris and fingerprint, do not have this merit. In this chapter, we discuss automatic face recognition technologies for evidential evaluations of video traces. We first introduce the general concepts in both forensic and automatic face recognition , then analyse the difficulties in face recognition from videos . We summarise and categorise the approaches for handling different uncontrollable factors in difficult recognition conditions. Finally we discuss some challenges and trends in face recognition research in both forensics and biometrics . Given its merits tested in many deployed systems and great potential in other emerging applications, considerable research and development efforts are expected to be devoted in face recognition in the near future

    People identification and tracking through fusion of facial and gait features

    Get PDF
    This paper reviews the contemporary (face, gait, and fusion) computational approaches for automatic human identification at a distance. For remote identification, there may exist large intra-class variations that can affect the performance of face/gait systems substantially. First, we review the face recognition algorithms in light of factors, such as illumination, resolution, blur, occlusion, and pose. Then we introduce several popular gait feature templates, and the algorithms against factors such as shoe, carrying condition, camera view, walking surface, elapsed time, and clothing. The motivation of fusing face and gait, is that, gait is less sensitive to the factors that may affect face (e.g., low resolution, illumination, facial occlusion, etc.), while face is robust to the factors that may affect gait (walking surface, clothing, etc.). We review several most recent face and gait fusion methods with different strategies, and the significant performance gains suggest these two modality are complementary for human identification at a distance

    People identification and tracking through fusion of facial and gait features

    Get PDF
    This paper reviews the contemporary (face, gait, and fusion) computational approaches for automatic human identification at a distance. For remote identification, there may exist large intra-class variations that can affect the performance of face/gait systems substantially. First, we review the face recognition algorithms in light of factors, such as illumination, resolution, blur, occlusion, and pose. Then we introduce several popular gait feature templates, and the algorithms against factors such as shoe, carrying condition, camera view, walking surface, elapsed time, and clothing. The motivation of fusing face and gait, is that, gait is less sensitive to the factors that may affect face (e.g., low resolution, illumination, facial occlusion, etc.), while face is robust to the factors that may affect gait (walking surface, clothing, etc.). We review several most recent face and gait fusion methods with different strategies, and the significant performance gains suggest these two modality are complementary for human identification at a distance
    • …
    corecore