2,534 research outputs found

    Advanced methods and deep learning for video and satellite data compression

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Sparse representation-based synthetic aperture radar imaging

    Get PDF
    There is increasing interest in using synthetic aperture radar (SAR) images in automated target recognition and decision-making tasks. The success of such tasks depends on how well the reconstructed SAR images exhibit certain features of the underlying scene. Based on the observation that typical underlying scenes usually exhibit sparsity in terms of such features, we develop an image formation method which formulates the SAR imaging problem as a sparse signal representation problem. Sparse signal representation, which has mostly been exploited in real-valued problems, has many capabilities such as superresolution and feature enhancement for various reconstruction and recognition tasks. However, for problems of complex-valued nature, such as SAR, a key challenge is how to choose the dictionary and the representation scheme for effective sparse representation. Since we are usually interested in features of the magnitude of the SAR reflectivity field, our new approach is designed to sparsely represent the magnitude of the complex-valued scattered field. This turns the image reconstruction problem into a joint optimization problem over the representation of magnitude and phase of the underlying field reflectivities. We develop the mathematical framework for this method and propose an iterative solution for the corresponding joint optimization problem. Our experimental results demonstrate the superiority of this method over previous approaches in terms of both producing high quality SAR images as well as exhibiting robustness to uncertain or limited data

    Sparse representation-based SAR imaging

    Get PDF
    There is increasing interest in using synthetic aperture radar (SAR) images in automated target recognition and decision-making tasks. The success of such tasks depends on how well the reconstructed SAR images exhibit certain features of the underlying scene. Based on the observation that typical underlying scenes usually exhibit sparsity in terms of such features, we develop an image formation method which formulates the SAR imaging problem as a sparse signal representation problem. Sparse signal representation, which has mostly been exploited in real-valued problems, has many capabilities such as superresolution and feature enhancement for various reconstruction and recognition tasks. However, for problems of complex-valued nature, such as SAR, a key challenge is how to choose the dictionary and the representation scheme for effective sparse representation. Since we are usually interested in features of the magnitude of the SAR reflectivity field, our new approach is designed to sparsely represent the magnitude of the complex-valued scattered field. This turns the image reconstruction problem into a joint optimization problem over the representation of magnitude and phase of the underlying field reflectivities. We develop the mathematical framework for this method and propose an iterative solution for the corresponding joint optimization problem. Our experimental results demonstrate the superiority of this method over previous approaches in terms of both producing high quality SAR images as well as exhibiting robustness to uncertain or limited data

    DoPAMINE: Double-sided Masked CNN for Pixel Adaptive Multiplicative Noise Despeckling

    Full text link
    We propose DoPAMINE, a new neural network based multiplicative noise despeckling algorithm. Our algorithm is inspired by Neural AIDE (N-AIDE), which is a recently proposed neural adaptive image denoiser. While the original N-AIDE was designed for the additive noise case, we show that the same framework, i.e., adaptively learning a network for pixel-wise affine denoisers by minimizing an unbiased estimate of MSE, can be applied to the multiplicative noise case as well. Moreover, we derive a double-sided masked CNN architecture which can control the variance of the activation values in each layer and converge fast to high denoising performance during supervised training. In the experimental results, we show our DoPAMINE possesses high adaptivity via fine-tuning the network parameters based on the given noisy image and achieves significantly better despeckling results compared to SAR-DRN, a state-of-the-art CNN-based algorithm.Comment: AAAI 2019 Camera Ready Versio
    corecore