5 research outputs found

    Design of a Switching Controller for Adaptive Disturbance Attenuation with Guaranteed Stability

    Get PDF
    In this paper, a new algorithm is proposed for the design of a family of controllers to be used within an adaptive switching control scheme. The resulting switching controller is able to attenuate the effects of disturbances having uncertain and possibly time-varying characteristics, as well as to ensure stability under arbitrary switching sequences. Specifically, the stability requirement is addressed within the synthesis of the set of controllers by imposing some constraints in LMI form. The overall synthesis algorithm is formulated in terms of convex optimization problems, which can be solved by means of standard tools. The validity of the proposed solution is underlined by showing simulation results on an adaptive optics case study

    Disturbance attenuation in linear systems revisited

    Get PDF
    A variety of methods have been proposed for attenuating or rejecting disturbances in linear systems. Most of the approaches, however, are targeting the performance either near resonance or across the whole frequency range. Weighting functions can be utilized to shape the frequency response function over target frequency band but they are usually of rule-of-thumb nature. A methodology is necessitated for designing controllers with performance specified at any discrete frequency or over any desired frequency band. The paper aims to develop such a methodology. Besides this, the proposed method can tell performance limitations and determine the problem of existence of optimal controllers, as well as providing a useful framework to improve the performance of an existing controller. A number of important results are obtained and these results are subsequently validated through a practical application to a rotor blade example

    Adaptive disturbance attenuation via logic-based switching

    No full text
    The problem of attenuating unknown and possibly time-varying disturbances acting on a linear time-invariant dynamical system is addressed by means of an adaptive switching control approach. Given a family of pre-designed stabilizing controllers, a supervisory unit infers in real-time the potential behavior of each candidate controller and selects the one providing the best potential performance. To this aim, a set of test functionals is defined, which is shown to enjoy favorable inference properties under certain assumptions on the nature of the disturbances. Both persistent-memory and finite-memory test functionals are analyzed. Further, an implementation of the switching controller is proposed which always guarantees stability of the feedback loop, even if the disturbance characteristics are such that the switching is persistent. Simulation results are provided to show the effectiveness of the proposed method

    Adaptive disturbance attenuation via logic-based switching

    No full text
    The problem of attenuating unknown and possibly time-varying disturbances acting on a linear time-invariant dynamical system is addressed by means of an adaptive switching control approach. Given a family of pre-designed stabilizing controllers, a supervisory unit infers in real-time the potential behavior of each candidate controller and selects the one providing the best potential performance. To this aim, a set of test functionals is defined, which is shown to enjoy favorable inference properties under certain assumptions on the nature of the disturbances. Both persistent-memory and finite-memory test functionals are analyzed. Further, an implementation of the switching controller is proposed which always guarantees stability of the feedback loop, even if the disturbance characteristics are such that the switching is persistent. Simulation results are provided to show the effectiveness of the proposed method. (C) 2014 Elsevier B.V. All rights reserved
    corecore