130 research outputs found

    Scalable iterative methods for sampling from massive Gaussian random vectors

    Full text link
    Sampling from Gaussian Markov random fields (GMRFs), that is multivariate Gaussian ran- dom vectors that are parameterised by the inverse of their covariance matrix, is a fundamental problem in computational statistics. In this paper, we show how we can exploit arbitrarily accu- rate approximations to a GMRF to speed up Krylov subspace sampling methods. We also show that these methods can be used when computing the normalising constant of a large multivariate Gaussian distribution, which is needed for both any likelihood-based inference method. The method we derive is also applicable to other structured Gaussian random vectors and, in particu- lar, we show that when the precision matrix is a perturbation of a (block) circulant matrix, it is still possible to derive O(n log n) sampling schemes.Comment: 17 Pages, 4 Figure

    Ensemble Joint Sparse Low Rank Matrix Decomposition for Thermography Diagnosis System

    Get PDF
    Composite is widely used in the aircraft industry and it is essential for manufacturers to monitor its health and quality. The most commonly found defects of composite are debonds and delamination. Different inner defects with complex irregular shape is difficult to be diagnosed by using conventional thermal imaging methods. In this paper, an ensemble joint sparse low rank matrix decomposition (EJSLRMD) algorithm is proposed by applying the optical pulse thermography (OPT) diagnosis system. The proposed algorithm jointly models the low rank and sparse pattern by using concatenated feature space. In particular, the weak defects information can be separated from strong noise and the resolution contrast of the defects has significantly been improved. Ensemble iterative sparse modelling are conducted to further enhance the weak information as well as reducing the computational cost. In order to show the robustness and efficacy of the model, experiments are conducted to detect the inner debond on multiple carbon fiber reinforced polymer (CFRP) composites. A comparative analysis is presented with general OPT algorithms. Not withstand above, the proposed model has been evaluated on synthetic data and compared with other low rank and sparse matrix decomposition algorithms

    Challenges in 3D scanning: Focusing on Ears and Multiple View Stereopsis

    Get PDF

    Context-dependent fusion with application to landmine detection.

    Get PDF
    Traditional machine learning and pattern recognition systems use a feature descriptor to describe the sensor data and a particular classifier (also called expert or learner ) to determine the true class of a given pattern. However, for complex detection and classification problems, involving data with large intra-class variations and noisy inputs, no single source of information can provide a satisfactory solution. As a result, combination of multiple classifiers is playing an increasing role in solving these complex pattern recognition problems, and has proven to be viable alternative to using a single classifier. In this thesis we introduce a new Context-Dependent Fusion (CDF) approach, We use this method to fuse multiple algorithms which use different types of features and different classification methods on multiple sensor data. The proposed approach is motivated by the observation that there is no single algorithm that can consistently outperform all other algorithms. In fact, the relative performance of different algorithms can vary significantly depending on several factions such as extracted features, and characteristics of the target class. The CDF method is a local approach that adapts the fusion method to different regions of the feature space. The goal is to take advantages of the strengths of few algorithms in different regions of the feature space without being affected by the weaknesses of the other algorithms and also avoiding the loss of potentially valuable information provided by few weak classifiers by considering their output as well. The proposed fusion has three main interacting components. The first component, called Context Extraction, partitions the composite feature space into groups of similar signatures, or contexts. Then, the second component assigns an aggregation weight to each detector\u27s decision in each context based on its relative performance within the context. The third component combines the multiple decisions, using the learned weights, to make a final decision. For Context Extraction component, a novel algorithm that performs clustering and feature discrimination is used to cluster the composite feature space and identify the relevant features for each cluster. For the fusion component, six different methods were proposed and investigated. The proposed approached were applied to the problem of landmine detection. Detection and removal of landmines is a serious problem affecting civilians and soldiers worldwide. Several detection algorithms on landmine have been proposed. Extensive testing of these methods has shown that the relative performance of different detectors can vary significantly depending on the mine type, geographical site, soil and weather conditions, and burial depth, etc. Therefore, multi-algorithm, and multi-sensor fusion is a critical component in land mine detection. Results on large and diverse real data collections show that the proposed method can identify meaningful and coherent clusters and that different expert algorithms can be identified for the different contexts. Our experiments have also indicated that the context-dependent fusion outperforms all individual detectors and several global fusion methods

    Neural Radiance Fields: Past, Present, and Future

    Full text link
    The various aspects like modeling and interpreting 3D environments and surroundings have enticed humans to progress their research in 3D Computer Vision, Computer Graphics, and Machine Learning. An attempt made by Mildenhall et al in their paper about NeRFs (Neural Radiance Fields) led to a boom in Computer Graphics, Robotics, Computer Vision, and the possible scope of High-Resolution Low Storage Augmented Reality and Virtual Reality-based 3D models have gained traction from res with more than 1000 preprints related to NeRFs published. This paper serves as a bridge for people starting to study these fields by building on the basics of Mathematics, Geometry, Computer Vision, and Computer Graphics to the difficulties encountered in Implicit Representations at the intersection of all these disciplines. This survey provides the history of rendering, Implicit Learning, and NeRFs, the progression of research on NeRFs, and the potential applications and implications of NeRFs in today's world. In doing so, this survey categorizes all the NeRF-related research in terms of the datasets used, objective functions, applications solved, and evaluation criteria for these applications.Comment: 413 pages, 9 figures, 277 citation

    Automatic Analysis of People in Thermal Imagery

    Get PDF

    ClimateNeRF: Physically-based Neural Rendering for Extreme Climate Synthesis

    Full text link
    Physical simulations produce excellent predictions of weather effects. Neural radiance fields produce SOTA scene models. We describe a novel NeRF-editing procedure that can fuse physical simulations with NeRF models of scenes, producing realistic movies of physical phenomena inthose scenes. Our application -- Climate NeRF -- allows people to visualize what climate change outcomes will do to them. ClimateNeRF allows us to render realistic weather effects, including smog, snow, and flood. Results can be controlled with physically meaningful variables like water level. Qualitative and quantitative studies show that our simulated results are significantly more realistic than those from state-of-the-art 2D image editing and 3D NeRF stylization.Comment: project page: https://climatenerf.github.io
    corecore