3,227 research outputs found

    Computation-Communication Trade-offs and Sensor Selection in Real-time Estimation for Processing Networks

    Full text link
    Recent advances in electronics are enabling substantial processing to be performed at each node (robots, sensors) of a networked system. Local processing enables data compression and may mitigate measurement noise, but it is still slower compared to a central computer (it entails a larger computational delay). However, while nodes can process the data in parallel, the centralized computational is sequential in nature. On the other hand, if a node sends raw data to a central computer for processing, it incurs communication delay. This leads to a fundamental communication-computation trade-off, where each node has to decide on the optimal amount of preprocessing in order to maximize the network performance. We consider a network in charge of estimating the state of a dynamical system and provide three contributions. First, we provide a rigorous problem formulation for optimal real-time estimation in processing networks in the presence of delays. Second, we show that, in the case of a homogeneous network (where all sensors have the same computation) that monitors a continuous-time scalar linear system, the optimal amount of local preprocessing maximizing the network estimation performance can be computed analytically. Third, we consider the realistic case of a heterogeneous network monitoring a discrete-time multi-variate linear system and provide algorithms to decide on suitable preprocessing at each node, and to select a sensor subset when computational constraints make using all sensors suboptimal. Numerical simulations show that selecting the sensors is crucial. Moreover, we show that if the nodes apply the preprocessing policy suggested by our algorithms, they can largely improve the network estimation performance.Comment: 15 pages, 16 figures. Accepted journal versio

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Quality-of-Information Aware Sensing Node Characterisation for Optimised Energy Consumption in Visual Sensor Networks

    Get PDF
    Energy consumption is one of the primary concerns in a resource constrained visual sensor network (VSN) with wireless transceiving capability. The existing VSN design solutions under particular resource constrained scenarios are application-specific, whereas the degree of sensitivity of the resource constraints varies from one application to another. This limits the implementation of the existing energy efficient solutions within a VSN node, which may be considered to be a part of a heterogeneous network. This thesis aims to resolve the energy consumption issues faced within VSNs because of their resource constrained nature by proposing energy efficient solutions for sensing nodes characterisation. The heterogeneity of image capture and processing within a VSN can be adaptively reflected with a dynamic field-of-view (FoV) realisation. This is expected to allow the implementation of a generalised energy efficient solution that will adapt with the heterogeneity of the network. In this thesis, a FoV characterisation framework is proposed, which can assist design engineers during the pre-deployment phase in developing energy efficient VSNs. The proposed FoV characterisation framework provides efficient solutions for: 1) selecting suitable sensing range; 2) maximising spatial coverage; 3) minimising the number of required nodes; and 4) adaptive task classification. The task classification scheme proposed in this thesis exploits heterogeneity of the network and leads to an optimal distribution of tasks between visual sensing nodes. Soft decision criteria is exploited, and it is observed that for a given detection reliability, the proposed FoV characterisation framework provides energy efficient solutions which can be implemented within heterogeneous networks. In the post-deployment phase, the energy efficiency of a VSN for a given level of reliability can be enhanced by reconfiguring its nodes dynamically to achieve optimal configurations. Considering the dynamic realisation of quality-of-information (QoI), a strategy is devised for selecting suitable configurations of visual sensing nodes to reduce redundant visual content prior to transmission without sacrificing the expected information retrieval reliability. By incorporating QoI awareness using peak signal-to-noise ratio-based representative metric, the distributed nature of the proposed self-reconfiguration scheme accelerates the decision making process. This thesis also proposes a unified framework for node classification and dynamic self-reconfiguration in VSNs. For a given application, the unified framework provides a feasible solution to classify and reconfigure visual sensing nodes based on their FoV by exploiting the heterogeneity of targeted QoI within the sensing region. From the results, it is observed that for the second degree of heterogeneity in targeted QoI, the unified framework outperforms its existing counterparts and results in up to 72% energy savings with as low as 94% reliability. Within the context of resource constrained VSNs, the substantial energy savings achieved by the proposed unified framework can lead to network lifetime enhancement. Moreover, the reliability analysis demonstrates suitability of the unified framework for applications that need a desired level of QoI

    A Comprehensive Survey of Potential Game Approaches to Wireless Networks

    Get PDF
    Potential games form a class of non-cooperative games where unilateral improvement dynamics are guaranteed to converge in many practical cases. The potential game approach has been applied to a wide range of wireless network problems, particularly to a variety of channel assignment problems. In this paper, the properties of potential games are introduced, and games in wireless networks that have been proven to be potential games are comprehensively discussed.Comment: 44 pages, 6 figures, to appear in IEICE Transactions on Communications, vol. E98-B, no. 9, Sept. 201

    Validating an integer non-linear program optimization model of a wireless sensor network using agent-based simulation

    Get PDF
    Deploying wireless sensor networks (WSN) along a barrier line to provide surveillance against illegal intruders is a fundamental sensor-allocation problem. To maximize the detection probability of intruders with a limited number of sensors, we propose an integer non-linear program optimization model which considers multiple types of sensors and targets, probabilistic detection functions and sensor-reliability issues. An agent-based simulation (ABS) model is used to validate the analytic results and evaluate the performance of the WSN under more realistic conditions, such as intruders moving along random paths. Our experiment shows that the results from the optimization model are consistent with the results from the ABS model. This increases our confidence in the ABS model and allows us to conduct a further experiment using moving intruders, which is more realistic, but it is challenging to find an analytic solution. This experiment shows the complementary benefits of using optimization and ABS models
    corecore