4 research outputs found

    Numerical modelling of multiple tuned mass damper equipped with magneto rheological damper for attenuation of building seismic responses

    Get PDF
    TMD is basically designed to be tuned to the dominant frequency of a structure which the excitation frequency will resonate the structural motion out of phase to reduce unwanted vibration. However, a single unit TMD is only capable of suppressing the fundamental structural mode and for multimode control, more than one TMD is needed. In this study, a 3-storey benchmark reinforced structural building subjected to El Centro seismic ground motion is modelled as uncontrolled Primary Structure (PS) by including properties such as stiffness and damping. For the case of controlled PS which the passive mechanism is included to the system, optimum parameters of both TMD and Multiple TMD (MTMD) are designed to be tuned to the dedicated structural modes where the performance is dependent on parameters such as mass ratio, optimum damping ratio, and optimum frequency ratio. The input and output components of structural system arrangements are then characterized in the transfer function manner and then converted into state space function. For enhancement of the passive system, Magneto-Rheological (MR) damper is added to both single TMD and MTMD passive system. The response analysis is executed using both time history and frequency response analysis. From the analysis, semi-active case is the most effective mechanism with 99% displacement reduction for the third and second floors, and 98% for the first floor, compared to the uncontrolled case. It is concluded that the MR damper significantly contributed to the enhancement of the passive system to mitigate structural seismic vibration

    State of the art of control schemes for smart systems featuring magneto-rheological materials

    Get PDF
    This review presents various control strategies for application systems utilizing smart magneto-rheological fluid (MRF) and magneto-rheological elastomers (MRE). It is well known that both MRF and MRE are actively studied and applied to many practical systems such as vehicle dampers. The mandatory requirements for successful applications of MRF and MRE include several factors: advanced material properties, optimal mechanisms, suitable modeling, and appropriate control schemes. Among these requirements, the use of an appropriate control scheme is a crucial factor since it is the final action stage of the application systems to achieve the desired output responses. There are numerous different control strategies which have been applied to many different application systems of MRF and MRE, summarized in this review. In the literature review, advantages and disadvantages of each control scheme are discussed so that potential researchers can develop more effective strategies to achieve higher control performance of many application systems utilizing magneto-rheological materials

    Dynamical systems : control and stability

    Get PDF
    Proceedings of the 13th Conference „Dynamical Systems - Theory and Applications" summarize 164 and the Springer Proceedings summarize 60 best papers of university teachers and students, researchers and engineers from whole the world. The papers were chosen by the International Scientific Committee from 315 papers submitted to the conference. The reader thus obtains an overview of the recent developments of dynamical systems and can study the most progressive tendencies in this field of science

    Adaptive control of structures with MR damper

    No full text
    corecore