44,313 research outputs found

    Concept Drift Adaptation with Incremental–Decremental SVM

    Get PDF
    Data classification in streams where the underlying distribution changes over time is known to be difficult. This problem—known as concept drift detection—involves two aspects: (i) detecting the concept drift and (ii) adapting the classifier. Online training only considers the most recent samples; they form the so-called shifting window. Dynamic adaptation to concept drift is performed by varying the width of the window. Defining an online Support Vector Machine (SVM) classifier able to cope with concept drift by dynamically changing the window size and avoiding retraining from scratch is currently an open problem. We introduce the Adaptive Incremental–Decremental SVM (AIDSVM), a model that adjusts the shifting window width using the Hoeffding statistical test. We evaluate AIDSVM performance on both synthetic and real-world drift datasets. Experiments show a significant accuracy improvement when encountering concept drift, compared with similar drift detection models defined in the literature. The AIDSVM is efficient, since it is not retrained from scratch after the shifting window slides

    Active fuzzy weighting ensemble for dealing with concept drift

    Full text link
    © 2018, the Authors. The concept drift problem is a pervasive phenomenon in real-world data stream applications. It makes well-trained static learning models lose accuracy and become outdated as time goes by. The existence of different types of concept drift makes it more difficult for learning algorithms to track. This paper proposes a novel adaptive ensemble algorithm, the Active Fuzzy Weighting Ensemble, to handle data streams involving concept drift. During the processing of data instances in the data streams, our algorithm first identifies whether or not a drift occurs. Once a drift is confirmed, it uses data instances accumulated by the drift detection method to create a new base classifier. Then, it applies fuzzy instance weighting and a dynamic voting strategy to organize all the existing base classifiers to construct an ensemble learning model. Experimental evaluations on seven datasets show that our proposed algorithm can shorten the recovery time of accuracy drop when concept drift occurs, adapt to different types of concept drift, and obtain better performance with less computation costs than the other adaptive ensembles

    Learning Discrete-Time Markov Chains Under Concept Drift

    Get PDF
    Learning under concept drift is a novel and promising research area aiming at designing learning algorithms able to deal with nonstationary data-generating processes. In this research field, most of the literature focuses on learning nonstationary probabilistic frameworks, while some extensions about learning graphs and signals under concept drift exist. For the first time in the literature, this paper addresses the problem of learning discrete-time Markov chains (DTMCs) under concept drift. More specifically, following a hybrid active/passive approach, this paper introduces both a family of change-detection mechanisms (CDMs), differing in the required assumptions and performance, for detecting changes in DTMCs and an adaptive learning algorithm able to deal with DTMCs under concept drift. The effectiveness of both the proposed CDMs and the adaptive learning algorithm has been extensively tested on synthetically generated experiments and real data sets

    Reservoir of Diverse Adaptive Learners and Stacking Fast Hoeffding Drift Detection Methods for Evolving Data Streams

    Full text link
    The last decade has seen a surge of interest in adaptive learning algorithms for data stream classification, with applications ranging from predicting ozone level peaks, learning stock market indicators, to detecting computer security violations. In addition, a number of methods have been developed to detect concept drifts in these streams. Consider a scenario where we have a number of classifiers with diverse learning styles and different drift detectors. Intuitively, the current 'best' (classifier, detector) pair is application dependent and may change as a result of the stream evolution. Our research builds on this observation. We introduce the \mbox{Tornado} framework that implements a reservoir of diverse classifiers, together with a variety of drift detection algorithms. In our framework, all (classifier, detector) pairs proceed, in parallel, to construct models against the evolving data streams. At any point in time, we select the pair which currently yields the best performance. We further incorporate two novel stacking-based drift detection methods, namely the \mbox{FHDDMS} and \mbox{FHDDMS}_{add} approaches. The experimental evaluation confirms that the current 'best' (classifier, detector) pair is not only heavily dependent on the characteristics of the stream, but also that this selection evolves as the stream flows. Further, our \mbox{FHDDMS} variants detect concept drifts accurately in a timely fashion while outperforming the state-of-the-art.Comment: 42 pages, and 14 figure

    Towards online concept drift detection with feature selection for data stream classification

    Get PDF
    Data Streams are unbounded, sequential data instances that are generated very rapidly. The storage, querying and mining of such rapid flows of data is computationally very challenging. Data Stream Mining (DSM) is concerned with the mining of such data streams in real-time using techniques that require only one pass through the data. DSM techniques need to be adaptive to reflect changes of the pattern encoded in the stream (concept drift). The relevance of features for a DSM classification task may change due to concept drifts and this paper describes the first step towards a concept drift detection method with online feature tracking capabilities

    Mining multi-dimensional concept-drifting data streams using Bayesian network classifiers

    Get PDF
    In recent years, a plethora of approaches have been proposed to deal with the increasingly challenging task of mining concept-drifting data streams. However, most of these approaches can only be applied to uni-dimensional classification problems where each input instance has to be assigned to a single output class variable. The problem of mining multi-dimensional data streams, which includes multiple output class variables, is largely unexplored and only few streaming multi-dimensional approaches have been recently introduced. In this paper, we propose a novel adaptive method, named Locally Adaptive-MB-MBC (LA-MB-MBC), for mining streaming multi-dimensional data. To this end, we make use of multi-dimensional Bayesian network classifiers (MBCs) as models. Basically, LA-MB-MBC monitors the concept drift over time using the average log-likelihood score and the Page-Hinkley test. Then, if a concept drift is detected, LA-MB-MBC adapts the current MBC network locally around each changed node. An experimental study carried out using synthetic multi-dimensional data streams shows the merits of the proposed method in terms of concept drift detection as well as classification performance
    • …
    corecore