776 research outputs found

    Efficient Resolution of Anisotropic Structures

    Get PDF
    We highlight some recent new delevelopments concerning the sparse representation of possibly high-dimensional functions exhibiting strong anisotropic features and low regularity in isotropic Sobolev or Besov scales. Specifically, we focus on the solution of transport equations which exhibit propagation of singularities where, additionally, high-dimensionality enters when the convection field, and hence the solutions, depend on parameters varying over some compact set. Important constituents of our approach are directionally adaptive discretization concepts motivated by compactly supported shearlet systems, and well-conditioned stable variational formulations that support trial spaces with anisotropic refinements with arbitrary directionalities. We prove that they provide tight error-residual relations which are used to contrive rigorously founded adaptive refinement schemes which converge in L2L_2. Moreover, in the context of parameter dependent problems we discuss two approaches serving different purposes and working under different regularity assumptions. For frequent query problems, making essential use of the novel well-conditioned variational formulations, a new Reduced Basis Method is outlined which exhibits a certain rate-optimal performance for indefinite, unsymmetric or singularly perturbed problems. For the radiative transfer problem with scattering a sparse tensor method is presented which mitigates or even overcomes the curse of dimensionality under suitable (so far still isotropic) regularity assumptions. Numerical examples for both methods illustrate the theoretical findings

    Robust Numerical Methods for Singularly Perturbed Differential Equations--Supplements

    Full text link
    The second edition of the book "Roos, Stynes, Tobiska -- Robust Numerical Methods for Singularly Perturbed Differential Equations" appeared many years ago and was for many years a reliable guide into the world of numerical methods for singularly perturbed problems. Since then many new results came into the game, we present some selected ones and the related sources.Comment: arXiv admin note: text overlap with arXiv:1909.0827

    First order least squares method with weakly imposed boundary condition for convection dominated diffusion problems

    Full text link
    We present and analyze a first order least squares method for convection dominated diffusion problems, which provides robust L2 a priori error estimate for the scalar variable even if the given data f in L2 space. The novel theoretical approach is to rewrite the method in the framework of discontinuous Petrov - Galerkin (DPG) method, and then show numerical stability by using a key equation discovered by J. Gopalakrishnan and W. Qiu [Math. Comp. 83(2014), pp. 537-552]. This new approach gives an alternative way to do numerical analysis for least squares methods for a large class of differential equations. We also show that the condition number of the global matrix is independent of the diffusion coefficient. A key feature of the method is that there is no stabilization parameter chosen empirically. In addition, Dirichlet boundary condition is weakly imposed. Numerical experiments verify our theoretical results and, in particular, show our way of weakly imposing Dirichlet boundary condition is essential to the design of least squares methods - numerical solutions on subdomains away from interior layers or boundary layers have remarkable accuracy even on coarse meshes, which are unstructured quasi-uniform

    Computational modelling of iron-ore mineralisation with stratigraphic permeability anisotropy

    Get PDF
    This study develops a computational framework to model fluid transport in sedimentary basins, targeting iron ore deposit formation. It offers a simplified flow model, accounting for geological features and permeability anisotropy as driving factors. A new finite element method lessens computational effort, facilitating robust predictions and cost-effective exploration. This methodology, applicable to other mineral commodities, enhances understanding of genetic models, supporting the search for new mineral deposits amid the global energy transition

    Application of Meshless Methods for Thermal Analysis

    Full text link
    Many numerical and analytical schemes exist for solving heat transfer problems. The meshless method is a particularly attractive method that is receiving attention in the engineering and scientific modeling communities. The meshless method is simple, accurate, and requires no polygonalisation. In this study, we focus on the application of meshless methods using radial basis functions (RBFs) — which are simple to implement — for thermal problems. Radial basis functions are the natural generalization of univariate polynomial splines to a multivariate setting that work for arbitrary geometry with high dimensions. RBF functions depend only on the distance from some center point. Using distance functions, RBFs can be easily implemented to model heat transfer in arbitrary dimension or symmetry
    • …
    corecore