185 research outputs found

    A novel target detection approach based on adaptive radar waveform design

    Get PDF
    AbstractTo resolve problems of complicated clutter, fast-varying scenes, and low signal-clutter-ratio (SCR) in application of target detection on sea for space-based radar (SBR), a target detection approach based on adaptive waveform design is proposed in this paper. Firstly, complicated sea clutter is modeled as compound Gaussian process, and a target is modeled as some scatterers with Gaussian reflectivity. Secondly, every dwell duration of radar is divided into several sub-dwells. Regular linear frequency modulated pulses are transmitted at Sub-dwell 1, and the received signal at this sub-dwell is used to estimate clutter covariance matrices and pre-detection. Estimated matrices are updated at every following sub-dwell by multiple particle filtering to cope with fast-varying clutter scenes of SBR. Furthermore, waveform of every following sub-dwell is designed adaptively according to mean square optimization technique. Finally, principal component analysis and generalized likelihood ratio test is used for mitigation of colored interference and property of constant false alarm rate, respectively. Simulation results show that, considering configuration of SBR and condition of complicated clutter, 9 dB is reduced for SCR which reliable detection requires by this target detection approach. Therefore, the work in this paper can markedly improve radar detection performance for weak targets

    Adaptive OFDM Radar for Target Detection and Tracking

    Get PDF
    We develop algorithms to detect and track targets by employing a wideband orthogonal frequency division multiplexing: OFDM) radar signal. The frequency diversity of the OFDM signal improves the sensing performance since the scattering centers of a target resonate variably at different frequencies. In addition, being a wideband signal, OFDM improves the range resolution and provides spectral efficiency. We first design the spectrum of the OFDM signal to improve the radar\u27s wideband ambiguity function. Our designed waveform enhances the range resolution and motivates us to use adaptive OFDM waveform in specific problems, such as the detection and tracking of targets. We develop methods for detecting a moving target in the presence of multipath, which exist, for example, in urban environments. We exploit the multipath reflections by utilizing different Doppler shifts. We analytically evaluate the asymptotic performance of the detector and adaptively design the OFDM waveform, by maximizing the noncentrality-parameter expression, to further improve the detection performance. Next, we transform the detection problem into the task of a sparse-signal estimation by making use of the sparsity of multiple paths. We propose an efficient sparse-recovery algorithm by employing a collection of multiple small Dantzig selectors, and analytically compute the reconstruction performance in terms of the ell1ell_1-constrained minimal singular value. We solve a constrained multi-objective optimization algorithm to design the OFDM waveform and infer that the resultant signal-energy distribution is in proportion to the distribution of the target energy across different subcarriers. Then, we develop tracking methods for both a single and multiple targets. We propose an tracking method for a low-grazing angle target by realistically modeling different physical and statistical effects, such as the meteorological conditions in the troposphere, curved surface of the earth, and roughness of the sea-surface. To further enhance the tracking performance, we integrate a maximum mutual information based waveform design technique into the tracker. To track multiple targets, we exploit the inherent sparsity on the delay-Doppler plane to develop an computationally efficient procedure. For computational efficiency, we use more prior information to dynamically partition a small portion of the delay-Doppler plane. We utilize the block-sparsity property to propose a block version of the CoSaMP algorithm in the tracking filter

    Polarization techniques for mitigation of low grazing angle sea clutter

    Full text link
    Maritime surveillance radars are critical in commerce, transportation, navigation, and defense. However, the sea environment is perhaps the most challenging of natural radar backdrops because maritime radars must contend with electromagnetic backscatter from the sea surface, or sea clutter. Sea clutter poses unique challenges in very low grazing angle geometries, where typical statistical assumptions regarding sea clutter backscatter do not hold. As a result, traditional constant false alarm rate (CFAR) detection schemes may yield a large number of false alarms while objects of interest may be challenging to detect. Solutions posed in the literature to date have been either computationally impractical or lacked robustness. This dissertation explores whether fully polarimetric radar offers a means of enhancing detection performance in low grazing angle sea clutter. To this end, MIT Lincoln Laboratory funded an experimental data collection using a fully polarimetric X-band radar assembled largely from commercial off-the-shelf components. The Point de Chene Dataset, collected on the Atlantic coast of Massachusetts’ Cape Ann in October 2015, comprises multiple sea states, bandwidths, and various objects of opportunity. The dataset also comprises three different polarimetric transmit schemes. In addition to discussing the radar, the dataset, and associated post-processing, this dissertation presents a derivation showing that an established multiple input, multiple output radar technique provides a novel means of simultaneous polarimetric scattering matrix measurement. A novel scheme for polarimetric radar calibration using a single active calibration target is also presented. Subsequent research leveraged this dataset to develop Polarimetric Co-location Layering (PCL), a practical algorithm for mitigation of low grazing angle sea clutter, which is the most significant contribution of this dissertation. PCL routinely achieves a significant reduction in the standard CFAR false alarm rate while maintaining detections on objects of interest. Moreover, PCL is elegant: It exploits fundamental characteristics of both sea clutter and object returns to determine which CFAR detections are due to sea clutter. We demonstrate that PCL is robust across a range of bandwidths, pulse repetition frequencies, and object types. Finally, we show that PCL integrates in parallel into the standard radar signal processing chain without incurring a computational time penalty

    AN ARTIFICIAL INTELLIGENCE APPROACH TO THE PROCESSING OF RADAR RETURN SIGNALS FOR TARGET DETECTION

    Get PDF
    Most of the operating vessel traffic management systems experience problems, such as track loss and track swap, which may cause confusion to the traffic regulators and lead to potential hazards in the harbour operation. The reason is mainly due to the limited adaptive capabilities of the algorithms used in the detection process. The decision on whether a target is present is usually based on the magnitude of the returning echoes. Such a method has a low efficiency in discriminating between the target and clutter, especially when the signal to noise ratio is low. The performance of radar target detection depends on the features, which can be used to discriminate between clutter and targets. To have a significant improvement in the detection of weak targets, more obvious discriminating features must be identified and extracted. This research investigates conventional Constant False Alarm Rate (CFAR) algorithms and introduces the approach of applying ar1ificial intelligence methods to the target detection problems. Previous research has been unde11aken to improve the detection capability of the radar system in the heavy clutter environment and many new CFAR algorithms, which are based on amplitude information only, have been developed. This research studies these algorithms and proposes that it is feasible to design and develop an advanced target detection system that is capable of discriminating targets from clutters by learning the .different features extracted from radar returns. The approach adopted for this further work into target detection was the use of neural networks. Results presented show that such a network is able to learn particular features of specific radar return signals, e.g. rain clutter, sea clutter, target, and to decide if a target is present in a finite window of data. The work includes a study of the characteristics of radar signals and identification of the features that can be used in the process of effective detection. The use of a general purpose marine radar has allowed the collection of live signals from the Plymouth harbour for analysis, training and validation. The approach of using data from the real environment has enabled the developed detection system to be exposed to real clutter conditions that cannot be obtained when using simulated data. The performance of the neural network detection system is evaluated with further recorded data and the results obtained are compared with the conventional CFAR algorithms. It is shown that the neural system can learn the features of specific radar signals and provide a superior performance in detecting targets from clutters. Areas for further research and development arc presented; these include the use of a sophisticated recording system, high speed processors and the potential for target classification

    Development and performance evaluation of a multistatic radar system

    Get PDF
    Multistatic radar systems are of emerging interest as they can exploit spatial diversity, enabling improved performance and new applications. Their development is being fuelled by advances in enabling technologies in such fields as communications and Digital Signal Processing (DSP). Such systems differ from typical modern active radar systems through consisting of multiple spatially diverse transmitter and receiver sites. Due to this spatial diversity, these systems present challenges in managing their operation as well as in usefully combining the multiple sources of information to give an output to the radar operator. In this work, a novel digital Commercial Off-The-Shelf (COTS) based coherent multistatic radar system designed at University College London, named ‘NetRad’, has been developed to produce some of the first published experimental results, investigating the challenges of operating such a system, and determining what level of performance might be achievable. Full detail of the various stages involved in the combination of data from the component transmitter-receiver pairs within a multistatic system is investigated, and many of the practical issues inherent are discussed. Simulation and subsequent experimental verification of several centralised and decentralised detection algorithms in terms of localisation (resolution and parameter estimation) of targets was undertaken. The computational cost of the DSP involved in multistatic data fusion is also considered. This gave a clear demonstration of several of the benefits of multistatic radar. Resolution of multiple targets that would have been unresolvable in a conventional monostatic system was shown. Targets were also shown to be plotted as two-dimensional vector position and velocities from use of time delay and Doppler shift information only. A range of targets were used including some such as walking people which were particularly challenging due to the variability of Radar Cross Section (RCS). Performance improvements were found to be dependant on the type of multistatic radar, method of data fusion and target characteristics in question. It is likely that future work will look to further explore the optimisation of multistatic radar for the various measures of performance identified and discussed in this work

    MIMO Radar Waveform Design and Sparse Reconstruction for Extended Target Detection in Clutter

    Get PDF
    This dissertation explores the detection and false alarm rate performance of a novel transmit-waveform and receiver filter design algorithm as part of a larger Compressed Sensing (CS) based Multiple Input Multiple Output (MIMO) bistatic radar system amidst clutter. Transmit-waveforms and receiver filters were jointly designed using an algorithm that minimizes the mutual coherence of the combined transmit-waveform, target frequency response, and receiver filter matrix product as a design criterion. This work considered the Probability of Detection (P D) and Probability of False Alarm (P FA) curves relative to a detection threshold, τ th, Receiver Operating Characteristic (ROC), reconstruction error and mutual coherence measures for performance characterization of the design algorithm to detect both known and fluctuating targets and amidst realistic clutter and noise. Furthermore, this work paired the joint waveform-receiver filter design algorithm with multiple sparse reconstruction algorithms, including: Regularized Orthogonal Matching Pursuit (ROMP), Compressive Sampling Matching Pursuit (CoSaMP) and Complex Approximate Message Passing (CAMP) algorithms. It was found that the transmit-waveform and receiver filter design algorithm significantly outperforms statically designed, benchmark waveforms for the detection of both known and fluctuating extended targets across all tested sparse reconstruction algorithms. In particular, CoSaMP was specified to minimize the maximum allowable P FA of the CS radar system as compared to the baseline ROMP sparse reconstruction algorithm of previous work. However, while the designed waveforms do provide performance gains and CoSaMP affords a reduced peak false alarm rate as compared to the previous work, fluctuating target impulse responses and clutter severely hampered CS radar performance when either of these sparse reconstruction techniques were implemented. To improve detection rate and, by extension, ROC performance of the CS radar system under non-ideal conditions, this work implemented the CAMP sparse reconstruction algorithm in the CS radar system. It was found that detection rates vastly improve with the implementation of CAMP, especially in the case of fluctuating target impulse responses amidst clutter or at low receive signal to noise ratios (β n). Furthermore, where previous work considered a τ th=0, the implementation of a variable τ th in this work offered novel trade off between P D and P FA in radar design to the CS radar system. In the simulated radar scene it was found that τ th could be moderately increased retaining the same or similar P D while drastically improving P FA. This suggests that the selection and specification of the sparse reconstruction algorithm and corresponding τ th for this radar system is not trivial. Rather, a tradeoff was noted between P D and P FA based on the choice and parameters of the sparse reconstruction technique and detection threshold, highlighting an engineering trade-space in CS radar system design. Thus, in CS radar system design, the radar designer must carefully choose and specify the sparse reconstruction technique and appropriate detection threshold in addition to transmit-waveforms, receiver filters and building the dictionary of target impulse responses for detection in the radar scene

    Biologically Inspired Sensing and MIMO Radar Array Processing

    Get PDF
    The contributions of this dissertation are in the fields of biologically inspired sensing and multi-input multi-output: MIMO) radar array processing. In our research on biologically inspired sensing, we focus on the mechanically coupled ears of the female Ormia ochracea. Despite the small distance between its ears, the Ormia has a remarkable localization ability. We statistically analyze the localization accuracy of the Ormia\u27s coupled ears, and illustrate the improvement in the localization performance due to the mechanical coupling. Inspired by the Ormia\u27s ears, we analytically design coupled small-sized antenna arrays with high localization accuracy and radiation performance. Such arrays are essential for sensing systems in military and civil applications, which are confined to small spaces. We quantitatively demonstrate the improvement in the antenna array\u27s radiation and localization performance due to the biologically inspired coupling. On MIMO radar, we first propose a statistical target detection method in the presence of realistic clutter. We use a compound-Gaussian distribution to model the heavy tailed characteristics of sea and foliage clutter. We show that MIMO radars are useful to discriminate a target from clutter using the spatial diversity of the illuminated area, and hence MIMO radar outperforms conventional phased-array radar in terms of target-detection capability. Next, we develop a robust target detector for MIMO radar in the presence of a phase synchronization mismatch between transmitter and receiver pairs. Such mismatch often occurs due to imperfect knowledge of the locations as well as local oscillator characteristics of the antennas, but this fact has been ignored by most researchers. Considering such errors, we demonstrate the degradation in detection performance. Finally, we analyze the sensitivity of MIMO radar target detection to changes in the cross-correlation levels: CCLs) of the received signals. Prior research about MIMO radar assumes orthogonality among the received signals for all delay and Doppler pairs. However, due to the use of antennas which are widely separated in space, it is impossible to maintain this orthogonality in practice. We develop a target-detection method considering the non-orthogonality of the received data. In contrast to the common assumption, we observe that the effect of non-orthogonality is significant on detection performance

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    Cognitive radar network design and applications

    Get PDF
    PhD ThesisIn recent years, several emerging technologies in modern radar system design are attracting the attention of radar researchers and practitioners alike, noteworthy among which are multiple-input multiple-output (MIMO), ultra wideband (UWB) and joint communication-radar technologies. This thesis, in particular focuses upon a cognitive approach to design these modern radars. In the existing literature, these technologies have been implemented on a traditional platform in which the transmitter and receiver subsystems are discrete and do not exchange vital radar scene information. Although such radar architectures benefit from these mentioned technological advances, their performance remains sub-optimal due to the lack of exchange of dynamic radar scene information between the subsystems. Consequently, such systems are not capable to adapt their operational parameters “on the fly”, which is in accordance with the dynamic radar environment. This thesis explores the research gap of evaluating cognitive mechanisms, which could enable modern radars to adapt their operational parameters like waveform, power and spectrum by continually learning about the radar scene through constant interactions with the environment and exchanging this information between the radar transmitter and receiver. The cognitive feedback between the receiver and transmitter subsystems is the facilitator of intelligence for this type of architecture. In this thesis, the cognitive architecture is fused together with modern radar systems like MIMO, UWB and joint communication-radar designs to achieve significant performance improvement in terms of target parameter extraction. Specifically, in the context of MIMO radar, a novel cognitive waveform optimization approach has been developed which facilitates enhanced target signature extraction. In terms of UWB radar system design, a novel cognitive illumination and target tracking algorithm for target parameter extraction in indoor scenarios has been developed. A cognitive system architecture and waveform design algorithm has been proposed for joint communication-radar systems. This thesis also explores the development of cognitive dynamic systems that allows the fusion of cognitive radar and cognitive radio paradigms for optimal resources allocation in wireless networks. In summary, the thesis provides a theoretical framework for implementing cognitive mechanisms in modern radar system design. Through such a novel approach, intelligent illumination strategies could be devised, which enable the adaptation of radar operational modes in accordance with the target scene variations in real time. This leads to the development of radar systems which are better aware of their surroundings and are able to quickly adapt to the target scene variations in real time.Newcastle University, Newcastle upon Tyne: University of Greenwich
    corecore