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Abstract To resolve problems of complicated clutter, fast-varying scenes, and low signal-clutter-

ratio (SCR) in application of target detection on sea for space-based radar (SBR), a target detection

approach based on adaptive waveform design is proposed in this paper. Firstly, complicated sea

clutter is modeled as compound Gaussian process, and a target is modeled as some scatterers with

Gaussian reflectivity. Secondly, every dwell duration of radar is divided into several sub-dwells.

Regular linear frequency modulated pulses are transmitted at Sub-dwell 1, and the received signal

at this sub-dwell is used to estimate clutter covariance matrices and pre-detection. Estimated matri-

ces are updated at every following sub-dwell by multiple particle filtering to cope with fast-varying

clutter scenes of SBR. Furthermore, waveform of every following sub-dwell is designed adaptively

according to mean square optimization technique. Finally, principal component analysis and gen-

eralized likelihood ratio test is used for mitigation of colored interference and property of constant

false alarm rate, respectively. Simulation results show that, considering configuration of SBR and

condition of complicated clutter, 9 dB is reduced for SCR which reliable detection requires by this

target detection approach. Therefore, the work in this paper can markedly improve radar detection

performance for weak targets.
ª 2013 CSAA & BUAA. Production and hosting by Elsevier Ltd.

Open access under CC BY-NC-ND license.
1. Introduction

Compared with airborne early warning (AEW) radar, space-
based radar (SBR) has many unique advantages for wide-area
surveillance and theatre defense, so people have paid more

attention to this kind of SBR recently.1–4 It is well known that
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SBR has long operation range and large beam footprint. Sig-
nal-clutter-ratio (SCR) is low when SBR monitors and tracks

weak targets on sea.5–7 With the development of waveform-
agility techniques, it has been possible to design radar wave-
forms on track in real time. Some research has borne out that

the technique of adaptive waveform design (AWD) can provide
a new chance to the improvement of radar target detection.8–10

Sea clutter was assumed to be independent and identically

Gaussian distributed in early research of signal process and
waveform design for radar. However, if the sea state is heavy
or the space resolution of the radar is high enough, the prob-

ability that spikes happen in sea clutter will increase and the
Gaussian model cannot describe spiked sea clutter properly
any more. Therefore, researchers proposed the compound
Gaussian (CG) model of sea clutter.11 This model has been
td. Open access under CC BY-NC-ND license.
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Fig. 2 Detailed flow at Sub-dwell n (n P 2).

A novel target detection approach based on adaptive radar waveform design 195
confirmed and applied widely. Some researchers have studied
the target detection issue of constant false alarm ratio (CFAR)
in strong CG sea clutter.12–16

In previous research, the approach of AWD discussed in
Ref.8 did not consider the factor of fast-varying scenes, so its
performance would be degraded in the application of SBR.

What’s more, as described in their paper, the method of prin-
cipal component analysis (PCA) used by that algorithm was
primitive and its performance of clutter suppression was lim-

ited. The AWD approach discussed in Refs.9,10 considered
the fast-varying factor of the clutter, but it could not be trac-
table mathematically because it utilized the covariance matrix
minimization. In addition, when the researchers studied the

CFAR detection techniques in Refs.12–16, they did not apply
the AWD technique to their algorithms. From current open re-
ports, the work discussed in this paper is the first attempt to

integrate the AWD technique into target detection of SBR.
The simulations show that detection performance can be im-
proved markedly by this work.

2. Outline of target detection approach

We propose a target detection approach based on clutter sta-

tistics update, AWD, and advanced PCA in this paper to re-
solve problems of complicated clutter, fast-varying scenes,
and low SCR in application of target detection on sea for

SBR. The procedure of this approach is shown in Figs. 1
and 2. The overall block diagram of the algorithm and the de-
tailed flow at Sub-dwell n (n P 2) are shown in Figs. 1 and 2,
respectively. Every dwell duration of the radar is divided into

several sub-dwells. The transmitting waveforms at Sub-dwell 1
are regular linear frequency modulated (LFM) pulses, and the
received signal at Sub-dwell 1 is used to estimate the clutter

covariance matrices. In addition, the received signal at this
sub-dwell is used for pre-detection so as to find those cells to
test further, whose amount equals to the amount of the follow-

ing sub-dwells needed. Then, the variation of the clutter
covariance for every following sub-dwell which corresponds
to one single cell is predicted by the multiple particle filtering
Fig. 1 Overall block diagram of algorithm based on AWD.
(MPF) method in order to fit the fast-varying clutter and settle
the problem of very large dimensionality when updating the

covariance matrices.17,18 Subsequently, the phase-modulated
(PM) waveform is designed and transmitted at every following
sub-dwell. The fact that we rest on to design the waveforms
here is that the signal after matched filtering depends on the

ambiguity function of the transmitting signal and the radar
scene, and this fact leads to energy contamination among the
cells. The waveforms are designed adaptively based on the tex-

ture values of the cells and mean square optimization in this
paper. As a result, the contamination on the cell to test further,
from other cells, can be minimized. Note that mean square

optimization is much more tractable mathematically than
covariance matrix minimization. At the end of every sub-dwell,
the generalized likelihood ratio test (GLRT) based on PCA

which projects the radar return onto the signal subspace
orthogonally for the clutter elimination is utilized to gain the
property of CFAR. The results of several numerical simula-
tions on the condition of the SBR show that there is approxi-

mately 9 dB reduced for the SCR which the reliable detection
(defined in Section 6) requires.

The process on every sub-dwell of the algorithm discussed

above, except for Sub-dwell 1, corresponds to one of many
cells to test further, so it is an algorithm which works sepa-
rately. On the other hand, all the cells to test further after

Sub-dwell 1 can be considered together at Sub-dwell 2 while
its waveform is designed, so their detection results can be ob-
tained at the end of Sub-dwell 2 and no more sub-dwell is
needed. The version of processing together adapts to wide-area

surveillance and the version of processing separately adapts to
tracking task. The detection of one single target at Sub-dwell 2
will be studied in this paper as this case is the basis of the two

versions.

3. Description of radar scene

If the size of a target is much larger than the wavelength of ra-
dar signal, the backscattering field of this target can be re-
garded as the sum of some different scatterers’ contributions

according to geometrical diffraction theory. We model the re-
turn of the target in the cell j as the sum of K0 scatterers, and
denote 1j ¼ ½1j;1 1j;2 � � � 1j;K0 �T as the complex backscattering

amplitudes vector of the target’s scatterers, where 1j;k0 is the
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complex amplitude of the k0th scatterer (k0 = 1,2, � � �,K0). The
different detector based on GLRT can be obtained according
to different assumptions of 1j. We assume that 1j is a Gaussian

random vector here, and this model of target return has been
used widely in the field of radar research.

Based on the compound Gaussian model, sea clutter is

composed of two components, namely speckle and texture.
The speckle component comes from lots of independent scat-
tering centers reflecting the incident wave, and the texture

component comes from the local average power backscat-
tered by large ocean swells. The speckle component can be
characterized by the short correlation time that is about
10 ms, and the correlation time of the texture component is

much longer, which can last about 50 s in time. The texture
component represents the spatial correlation that depends
on the spatial resolution of the radar, the sea condition,

and the wind speed. According to the compound Gaussian
model, the texture value, defined as T, of every cell on sea
is gamma distributed, and its probability distribution func-

tion (PDF) is

pðTÞ ¼ 2bm

CðmÞT
2m�1 expð�b2T2Þ ð1Þ

where the scale parameter b influences the mean of the CG dis-

tribution, and the shape parameter m represents its similarity
with Gaussian distribution. The value range of m for sea clutter
is usually 0.2–2, and its typical value is 0.4.

In our detection approach, every dwell time is divided into
N sub-dwells, and K pulses are transmitted coherently at every
sub-dwell. Let sn[i] (i= 0,1, � � �,Ns � 1) be the pulse transmit-

ting at Sub-dwell n (n = 0,1, � � �,N), where Ns is the sampling
length of the pulse. It is assumed here that the pulses at all
the sub-dwells have the same bandwidth and sampling length.

The radar samples the return of every sub-dwell and gains
the observation Yn[m,k], where k= 1,2, � � �,K,
m ¼ m0;m1; � � � ; mMn�1, Mn is the amount of the cells in valid
gate of every sub-dwell, and m0 the number of the lowest range

cell. Then, the radar return at Sub-dwell n,Yn[m,k], can be writ-
ten as

Yn½m; k� ¼
XNs

i¼0
Bn½m� i; k�sn½i� þ Vn½m; k� ð2Þ

where Vn[m,k] represents the Gaussian white noise and Bn[m,k]
the complex reflectivity of the certain cell on sea.

Define the transmitting signal matrix Pn for Sub-dwell n,

which is an Mn · Nv matrix and can be written as

Pn ¼

snð0Þ snð1Þ � � � snðNs � 1Þ 0 0 � � � 0

0 snð0Þ snð1Þ � � � snðNs � 1Þ 0 � � � 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0 � � � � � � � � � � � � snðNs � 2Þ snðNs � 1Þ

266664
377775
ð3Þ

where Nv = Ns + Mn � 1. We denote Bn[m,k] as the complex
reflectivity of one cell on sea, which considers the kth
(k = 1,2, � � �,K) pulse and the mth (m ¼ m0;m1; � � � ; mNv�1Þ
range cell, so the backscattering situation of the sea in the view
field of the radar can be represented as the backscattering
reflectivity matrix Bn. Bn is an Nv · K matrix whose element

is Bn[m,k], with range (fast time) increasing down along the
columns and transmitted pulse (slow time) increasing right-
ward across the rows.
We process Bn across every row by discrete Fourier trans-
form (DFT) and obtain the elements of the scattering matrix
An:

An½m; l� ¼
1ffiffiffiffi
K
p

XK
k¼1

Bn½m; k�e�j2pkl=K ð4Þ

where l 2 {�(K � 1)/2, �(K � 2)/2, � � �, (K � 1)/2}. The rela-
tionship between An and Bn is shown in Eq. (5):

An ¼ BnD ð5Þ

where D is the so-called DFT matrix. An is the range-Doppler

expression of the matrix Bn. Assuming that K is odd, the mid-
dle column of An expresses static scatterers, its former (K � 1)/2
columns express those scatterers that have negative Doppler

frequency shifts, and its latter (K � 1)/2 columns express those
scatterers that have positive Doppler frequency shifts.

Considering the transmitting signal matrix Pn and Eq. (2),

we get the observation matrix Yn that is an Mn · K matrix
by Eq. (6):

Yn ¼ PnBn þ Vn ð6Þ

where Vn is the noise matrix at Sub-dwell n which is anMn · K

matrix too. The element of Vn is written as Vn [m,k].
The scatterers on the ground will travel with respect to the

radar platform when a SBR works. Some scatterers will move
out of the valid gate, and some others will move into it. In or-

der to describe the evolution of scattering matrix in fast-vary-
ing scenes, we introduce an evolutionary matrix F to represent
the movement of the scatterers. The backscattering reflectivity

of the new cells that move into the valid gate can be repre-
sented as the weighted exponential sum of the reflectivity of
the close neighbor cells which have the same Doppler fre-

quency.10 The movement of the scatterers happens in every
column of An until all the empty cells have new scatterers.
We stack all the columns of the matrix An from left to right

to form a vector an with a length of KNv. This vectorized oper-
ation is represented as an = vec(An), and the evolution of the
vectorized scattering matrix is given as

an ¼ Fan�1 þ wn ð7Þ

where wn is the zero mean Gaussian noise vector with the

covariance RCov_wn
. F is a KNv · KNv block-diagonal matrix

which represents the movement of the scatterers between
sub-dwells. The observation matrix Yn = PnAnD

�1 + Vn.

Considering the matrix relationship vec(GZL) = (LH � G)z,
where G, Z, and L are three arbitrary matrices, z = vec(Z),
� represents Kronecker product, the superscript ‘‘H’’ ex-

presses Hermitian operation we express the vectorized obser-
vation as the following formula:

yn ¼ ðD�H � PnÞan þ vn ¼ P
^

nan þ vn ð8Þ

where yn ¼ vecðYnÞ; P
^

n ¼ D�H � Pn. an in Eqs. (7) and (8) is
unknown.
4. Update of sea clutter statistic

The clutter covariance matrices of the cells to test further are
estimated at Sub-dwell 1 based on its return data. Therefore,
it is a key point to update these covariance matrices according

to the movement of the radar platform.
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Let RCov_an
be the covariance matrix of an, and according to

the dynamic model shown in Eq. (7), there is

RCov an ¼ E ana
H
n

� �
¼ FRCov an�1F

H þ RCov wn
ð9Þ

where RCov_wn
is the covariance matrix of wn. Similarly, for the

covariance matrix of vectorized observation in Eq. (8), there is

RCov yn ¼ P
^

nRCov anP
^

H
n þ RCov vn ð10Þ

where RCov_vn
is the covariance matrix of vn. We can get

pðynjRCov anÞ to update the filter using Eq. (10).10 Note that
RCov_wn

in Eq. (9) and RCov_vn
in Eq. (10) ought to be Wishart

distributed because they are the covariance matrices of the
multivariate normal samples wn and vn, respectively.

Particle filtering (PF) is a sequential Monte-Carlo method
which approximates a probability density function by sam-
pling. It can approximate Kalman filtering well even if the sys-

tem model is non-linear or non-Gaussian. However, lots of
particles will be needed and the computation complexity will
be unacceptable when the dimensionality of the state space is

too large, as in our case here. There is the relationship as Eq.
(5) between An and Bn. Once RCov_an

is estimated, we can get
RCov bn ¼ ðD� INv

ÞRCov anðDH � INv
Þ. Let an = fn(an�1,xn�1)

and bn = hn(an,cn) be the dynamic equation and the measure-

ment equation, respectively. an is a high-dimensional system
state vector at time step n. fn and hn are two certain functions
(nonlinear probably). xn and cn are the random vectors. Let

an be divided into sub-vectors, that is an ¼ ½aT
1;n aT

2;n � � � aT
L;n�

T
,

and aT
l;nðl ¼ 1; 2; � � � ; LÞ is estimated by a certain PF. This is

the so-called multiple particle filter. At the time step n, L PFs

are working simultaneously and the state vector an is composed
eventually.

In order to solve the system equation using the Bayesian

technique, we vectorize the dynamic model of Eq. (9) and
the observation model of Eq. (10) as follows:

rCov an ¼ ðF� FÞrCov an�1 þ rCov wn

rCov yn ¼ ðP
^

n � P
^

nÞrCov an þ rCov vn

(
ð11Þ

where rCov_an = vec(RCov_an
),rCov_yn = vec(RCov_yn

),rCov_vn =
vec(RCov_vn

) and rCov_wn
= vec(RCov_wn

). The length of rCov_an
is (KNv)

2, so its dimensionality will be very large even if a small
amount of pulses are used. Such a high dimensionality will
make PF or Kalman filter hard to handle even if the transform

is linear, and the use of MPF will be necessary.
F � F in Eq. (11) is block-diagonal, that is

F� F ¼

F1 � F 0 � � � 0

0 F2 � F � � � 0

..

. ..
. ..

.

0 0 � � � FK � F

266664
377775 ð12Þ

where Fk is the kth block matrix on the diagonal line of
F(k = 1,2, � � �,K). Based on the structure of F � F, the varia-
tion of the state vector can be divided into K independent

sub-systems:

rCov an ¼ KT
1;n KT

2;n � � � KT
K;n

h iT
ð13Þ

where the dimensionality of every sub-vector
KT

k;nðk ¼ 1; 2; � � � ; KÞ is KN2
v . K PFs are used, and every filter

corresponds to a sub-system. We use the following dynamic
and measurement models to estimate the kth sub-system:
Kk;n ¼ ðFk � FÞKk;n�1 þ rk;Cov wn

rCov yn ¼ ðP
^

n � P
^

nÞrCov an þ rCov vn

(
ð14Þ

The detailed update method of every PF’s weight can be
found in Refs.17,18.

5. Waveform design

After Sub-dwell 1, it is assumed that we have determined to

access the range-Doppler cell j at Sub-dwell 2. As discussed
before, all the range-Doppler cells contribute clutter energy
to the return of the cell j after matched filtering. We design
the waveform s2[n] for Sub-dwell 2, whose auto-correlation

function (ACF) is close to zero at the cells having high clut-
ter energy, to minimize clutter energy contamination to the
test cell.

Let s2(t) be unimodular phase-modulated waveform, which
is expressed as

s2ðtÞ ¼ expðj/ðtÞÞ; 0 6 t 6 Ts ð15Þ

where /(t) is expanded in terms of an orthogonal set of basis

functions ui(t) as

/ðtÞ ¼
XNs

i¼1
ki/iðtÞ ð16Þ

where

uiðtÞ ¼
1; ði� 1ÞDT 6 t 6 iDT

0; Otherwise

�
where i= 1,2, � � �,Ns. The total waveform duration
Ts = NsDT. As discussed before, we assume that the wave-
forms of all the sub-dwells have the same sampling length

and bandwidth. The PM waveform shown in Eq. (15) is ob-
tained easily, and this kind of waveform can utilize the
transmitting power of radar fully as it is not amplitude-

modulated.
Define ACF of s2(t) as

zs2ðs;xÞ ¼
Z 1

�1

Z 1

�1
s2ðt; fÞs�2ðt� s; f� xÞdxds ð17Þ

and then it is a key point to determine the coefficient ki in Eq.
(16) for minimizing the following formula:

JðkÞ ¼
Z
Zs;x

jzs2ðs;xÞj
2
ds ð18Þ

where k ¼ ½k1 k2 � � � kNs
�T and Zs,x is the set of the cells which

have large texture values. Essentially, the adaptive waveform
design we talk about here is to synthesize PM signal whose
ACF approximates the special function well in the sense of
mean square.

The ACF of the PM waveform shown as Eq. (17) has more
simple expression.8 Using the squared magnitude of zs2 ðs;xÞ,
the gradient and Hessian of J(k) can be computed. Then the

minimization of Eq. (18) can be realized by the Newton–Raph-
son method. This is the so-called mean square optimization,
and the more details of this optimization technique can be seen

in Ref.8. Therefore, the ACF magnitudes of the cells having
large texture values are minimized with respect to the test cell.
The set Zs,x in Eq. (18) are composed by the Nt cells having
large texture components. As this set is discreet, the integral

in Eq. (18) can be simplified to the sum operation:
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JðkÞ ¼
X
Zs;x

jzs2 ½m; n�j
2 ð19Þ

where the elements of Zs,x are the integral multiples of the
sampling interval DTs and the Doppler filter spacing Df.

We have discussed the waveform design method at Sub-
dwell 2, and the method at the following sub-dwells is the
same.
6. Generalized likelihood ratio test

At the end of Sub-dwell n (n P 2), we should detect whether
there is a target in the certain cell or not. Especially, we need

to make a pre-detection at Sub-dwell 1 to determine the cells
to test further. A GLRT based on PCA is introduced to realize
the property of CFAR in this section. This detection method is

applied to the returns of all the sub-dwells, and two thresholds
Th1 and Th2 will be set at Sub-dwell 1 according to two differ-
ent combinations of the false alarm probabilities and the detec-
tion probabilities, respectively, namely Pfa = 10�6/Pd = 0.9

(the reliable detection) and Pfa = 10�4/Pd = 0.5 (the critical
detection) where Pd represents the detection probability and
Pfa the false alarm probability. At Sub-dwell 1, we will

consider that one target exists in some certain cells if their test
statistics are beyond Th1, and the cells whose test statistics lie
between Th1 and Th2 will be considered to test further. At the

following sub-dwells, Th1 is used to check if there is a target or
not in the certain test cell.

The hypothesis H0 and H1 are defined to express the cases
that there is only clutter energy in the return of the certain cell

and that there is energy of both clutter and a target in it,
respectively. The detector will have CFAR property when its
detection threshold is independent of clutter power. The detec-

tion threshold is usually in term of clutter covariance matrix in
the research of adaptive detection. In fact, we can form the
generalized likelihood ratio test independent of clutter texture

component and obtain the adaptive detector. The threshold of
this detector depends on the target steering matrix, more accu-
rately, on the rank of the target steering matrix (namely the

size of signal subspace).15 For the Gaussian scatterer model
of a target, the log-likelihood-ratio lnHð~rjÞ of this detector
can be written as

lnHð~rjÞ ¼ �K lnK� ln ðK� K0Þ
~rHj
eQj~rj

~rHj eQ?j ~rj
� ðK0 � 1Þ

 !

þ K ln 1þ
~rHj
eQj~rj

~rHj eQ?j ~rj

 !
ð20Þ

where K0 is the size of the signal subspace, rj the return of the
cell j, and the matrix Qj the orthogonal projector onto the sig-

nal subspace. ~rj and eQj are obtained by whitening rj and Qj,

and eQ?j ¼ I� eQj which is the orthogonal projector onto the

clutter subspace. Note that the signal and clutter subspaces
are independent of the waveform variation.8 The threshold

of this GLRT based on the Gaussian scatterers model is diffi-
cult to derive in a closed form, so we resort to the Monte-Carlo
method to compute it.

The orthogonal projector onto the signal subspace can be
derived by the clutter covariance matrix and the target steering
matrix. In order to estimate the steering matrix, we shall re-
strict this matrix to the structure of the signal subspace first.
That is to say, we should estimate the Doppler frequencies
of the target scatterers by the super resolution method. The
method that uses the eigen-decomposition to analyze the signal

subspace is sensitive to the estimation error, especially in the
case of the small-size observation vector. Therefore, we may
use root-MUSIC (Multiple Signal Classification) or estimation

signal parameters via rotational invariance techniques
(ESPRIT) algorithm which does not maximize the MUSIC
pseudo-spectrum but estimates the Doppler frequency directly.

The size of the signal subspace, which is the K0 mentioned in
Section 3, ought to be known previously, but this knowledge
is not apriori known and needs to be estimated. The size of
the signal subspace equals to the amount of the eigen-values

which are larger than the minimum eigen-values of the covari-
ance matrix of the observation. However, the estimation of the
covariance matrix is usually not precise, so the size of the sig-

nal subspace cannot be obtained by counting the eigen-values.
As a result, we shall resort to some criterions based on the
information theory, such as the Akaike information criterion

(AIC) and minimum description length (MDL). AIC prefers
to overestimate the size of signal subspace even if SCR is high.
MDL may underestimate it when K is small or SCR is low.

The estimation of the signal subspace size remains a tricky
issue.
7. Simulation results

We introduce one simple example first to illustrate the validity
of AWD based on the mean square optimization shown in Sec-
tion 5. In this example, there is one single target and it is de-

tected reliably at Sub-dwell 2. The radar platform is assumed
to be fixed, so the clutter covariance need not be updated.
What’s more, we only carry out matched filtering along the

range direction and detect the target, so the autocorrelation
function Eq. (17) in Section 5 can be degraded to a single-argu-
ment function with respect to the time lag. The CG sea clutter

is generated by the method of spherically invariant random
process (SIRP), and the shape parameter of the CG clutter is
set as 0.4. The range of the test cell is 10 km away, and the

operation frequency is 10 GHz. The amount of the pulses
transmitting at each of the two sub-dwells is 10, the duration
time of the pulses is 1.5 ls, and the pulse repeat interval
(PRI) is 100 ls. The duration time of the two sub-dwells is

both 1 ms. Assume that the sampling rate is 100 MHz, so there
are 150 samples in one pulse. The waveform s1(n) transmitting
at Sub-dwell 1 is the regular LFM pulse, and the waveform

s2(n) designed for Sub-dwell 2 has the same pulse width and
bandwidth as the waveform at Sub-dwell 1. There are
Ns = 150 phase functions being used in Eq. (16). We estimate

the texture of all the cells, and choose Nt = 140 cells having
larger texture to optimize the ACF of s2(n). The result of wave-
form design is shown in Fig. 3. For comparison, there are the
ACF magnitudes of the regular LFM waveform and that of

the designed waveform in this figure, which are shown as the
solid line and the dashed line, respectively. In Fig. 3, the lags
of the 140 cells having larger texture are labeled with asterisks.

It can be seen that the ACF amplitudes of the designed wave-
form on these 140 lags are small indeed. Some ACF side-lobes
of the designed waveform are higher than that of LFM wave-

form, but the clutter corresponding to these side-lobes is weak
and their effect is small.



ig. 4 Detection performance comparison of four different

etection approaches.

Fig. 3 ACF comparison of designed PM waveform with LFM

chirp.
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Subsequently, we simulate the clutter of the SBR by the
way discussed in Ref.7 and analyze the performance of the
detection approach. The main parameters of the SBR candi-

date are shown in Table 1, and the detailed description of
the SBR can be found in Refs.5,6. While there were 32 pulses
processed coherently in these two references, the amount of

pulses in one sub-dwell, namely the amount of the pulses pro-
cessed coherently, is set to 16 here. In a similar way to the pre-
ceding example, we only study the detection problem of one

single weak target which is modeled as some Gaussian scatter-
ers, and one dwell duration is composed by two sub-dwells. We
assume that the shape parameter of the CG clutter is 0.4, and

the receiver operating curves (ROCs) of four different detec-
tion approaches for the reliable detection is shown in Fig. 4,
which are:

Case 1: The ROC obtained by the approach discussed in this
paper is shown as the dashed line.

Case 2: The ROC obtained by the approach discussed in this

paper, without clutter covariance matrix updating at
Sub-dwell 2 as discussed in Section 4, is shown as
the dotted line.

Case 3: The ROC obtained by the approach discussed in this
paper, without AWD at Sub-dwell 2 as discussed in
Section 5, is shown as the dot-dashed line.

Case 4: The ROC obtained by processing 32 regular LMF

pulses coherently, i.e., not dividing the dwell duration
but detecting as discussed in Section 6, is shown as the
solid line.
Table 1 Parameters of SBR candidate.

Parameter Value

Center frequency (GHz) 1.25

PRI (ls) 500

Pulse width (ls) 100

Bandwidth (MHz) 10

Antenna length (m) 50.0

Antenna height (m) 2.10
F

d

In Fig. 4, compared with the approach that 16 regular
LFM pulses are processed coherently (Case 3), the SCR
which the reliable detection needs can decrease approxi-

mately 9 dB by the complete approach discussed in this pa-
per (Case 1). Compared with the approach that 32 pulses
are processed coherently (Case 4), the SCR which the reli-

able detection needs can decrease approximately 6 dB by
the complete approach discussed in this paper (Case 1).
Compared with the approach without clutter covariance ma-

trix update (Case 2), the SCR which the reliable detection
needs can decrease about 3 dB by the complete approach
discussed in this paper (Case 1).

Finally, based on the SBR configuration of the above

simulation, we change the shape parameter of the CG sea
clutter and verify the performance of this detection approach
further. The ROCs on the condition that the shape param-

eters of the clutter are 0.2, 0.4, and 2 are shown as the
dashed line, the solid line, and the dot-dashed line in
Fig. 5, respectively. It can be seen that the SCR for the reli-

able detection will fall between �5 and 5 dB when the shape
parameter falls between 0.2 and 2.
Fig. 5 Detection performance comparison for clutter with

different shape parameters.
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8. Conclusions

A novel algorithm based on adaptive waveform design is pro-
posed for SBR in this paper, by which targets can be detected

effectively in complicated heavy fast-varying sea clutter. We
carry out three simulation experiments, and the results show
that: (1) the contribution of clutter energy to the test cell, from

other cells having large texture, can be reduced by the method
of AWD discussed in this paper; (2) the SCR for the reliable
detection can improve 9 dB by the detection approach pro-
posed in this paper on the condition of the spiked sea clutter

and the SBR configuration compared with the traditional ap-
proach of transmitting the regular LFM burst, and the dy-
namic update of clutter covariance matrix can offer SCR

improvement of 2–3 dB; (3) this detection algorithm has better
performance in more spiked clutter scenes. In future, we will
introduce the schedule of multiple antennas and channels to

our research, which has more degrees of freedom and is ex-
pected to implement the surveillance and tracking task for
SBR better.
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