7,128 research outputs found

    Energy efficiency of error correction on wireless systems

    Get PDF
    Since high error rates are inevitable to the wireless environment, energy-efficient error-control is an important issue for mobile computing systems. We have studied the energy efficiency of two different error correction mechanisms and have measured the efficiency of an implementation in software. We show that it is not sufficient to concentrate on the energy efficiency of error control mechanisms only, but the required extra energy consumed by the wireless interface should be incorporated as well. A model is presented that can be used to determine an energy-efficient error correction scheme of a minimal system consisting of a general purpose processor and a wireless interface. As an example we have determined these error correction parameters on two systems with a WaveLAN interfac

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    Error resilient packet switched H.264 video telephony over third generation networks.

    Get PDF
    Real-time video communication over wireless networks is a challenging problem because wireless channels suffer from fading, additive noise and interference, which translate into packet loss and delay. Since modern video encoders deliver video packets with decoding dependencies, packet loss and delay can significantly degrade the video quality at the receiver. Many error resilience mechanisms have been proposed to combat packet loss in wireless networks, but only a few were specifically designed for packet switched video telephony over Third Generation (3G) networks. The first part of the thesis presents an error resilience technique for packet switched video telephony that combines application layer Forward Error Correction (FEC) with rateless codes, Reference Picture Selection (RPS) and cross layer optimization. Rateless codes have lower encoding and decoding computational complexity compared to traditional error correcting codes. One can use them on complexity constrained hand-held devices. Also, their redundancy does not need to be fixed in advance and any number of encoded symbols can be generated on the fly. Reference picture selection is used to limit the effect of spatio-temporal error propagation. Limiting the effect of spatio-temporal error propagation results in better video quality. Cross layer optimization is used to minimize the data loss at the application layer when data is lost at the data link layer. Experimental results on a High Speed Packet Access (HSPA) network simulator for H.264 compressed standard video sequences show that the proposed technique achieves significant Peak Signal to Noise Ratio (PSNR) and Percentage Degraded Video Duration (PDVD) improvements over a state of the art error resilience technique known as Interactive Error Control (IEC), which is a combination of Error Tracking and feedback based Reference Picture Selection. The improvement is obtained at a cost of higher end-to-end delay. The proposed technique is improved by making the FEC (Rateless code) redundancy channel adaptive. Automatic Repeat Request (ARQ) is used to adjust the redundancy of the Rateless codes according to the channel conditions. Experimental results show that the channel adaptive scheme achieves significant PSNR and PDVD improvements over the static scheme for a simulated Long Term Evolution (LTE) network. In the third part of the thesis, the performance of the previous two schemes is improved by making the transmitter predict when rateless decoding will fail. In this case, reference picture selection is invoked early and transmission of encoded symbols for that source block is aborted. Simulations for an LTE network show that this results in video quality improvement and bandwidth savings. In the last part of the thesis, the performance of the adaptive technique is improved by exploiting the history of the wireless channel. In a Rayleigh fading wireless channel, the RLC-PDU losses are correlated under certain conditions. This correlation is exploited to adjust the redundancy of the Rateless code and results in higher Rateless code decoding success rate and higher video quality. Simulations for an LTE network show that the improvement was significant when the packet loss rate in the two wireless links was 10%. To facilitate the implementation of the proposed error resilience techniques in practical scenarios, RTP/UDP/IP level packetization schemes are also proposed for each error resilience technique. Compared to existing work, the proposed error resilience techniques provide better video quality. Also, more emphasis is given to implementation issues in 3G networks

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    An Opportunistic Error Correction Layer for OFDM Systems

    Get PDF
    In this paper, we propose a novel cross layer scheme to lower power\ud consumption of ADCs in OFDM systems, which is based on resolution\ud adaptive ADCs and Fountain codes. The key part in the new proposed\ud system is that the dynamic range of ADCs can be reduced by\ud discarding the packets which are transmitted over 'bad' sub\ud carriers. Correspondingly, the power consumption in ADCs can be\ud reduced. Also, the new system does not process all the packets but\ud only processes surviving packets. This new error correction layer\ud does not require perfect channel knowledge, so it can be used in a\ud realistic system where the channel is estimated. With this new\ud approach, more than 70% of the energy consumption in the ADC can be\ud saved compared with the conventional IEEE 802.11a WLAN system under\ud the same channel conditions and throughput. The ADC in a receiver\ud can consume up to 50% of the total baseband energy. Moreover, to\ud reduce the overhead of Fountain codes, we apply message passing and\ud Gaussian elimination in the decoder. In this way, the overhead is\ud 3% for a small block size (i.e. 500 packets). Using both methods\ud results in an efficient system with low delay

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Optimal Worst-Case QoS Routing in Constrained AWGN Channel Network

    Get PDF
    In this paper, we extend the optimal worst-case QoS routing algorithm and metric definition given in [1]. We prove that in addition to the q-ary symmetric and q-ary erasure channel model, the necessary and sufficient conditions defined in [2] for the Generalized Dijkstra's Algorithm (GDA) can be used with a constrained non-negative-mean AWGN channel. The generalization allowed the computation of the worst-case QoS metric value for a given edge weight density. The worst-case value can then be used as the routing metric in networks where some nodes have error correcting capabilities. The result is an optimal worst-case QoS routing algorithm that uses the Generalized Dijkstra's Algorithm as a subroutine with a polynomial time complexity of O(V^3)

    The application of iterative equalisation to high data rate wireless personal area networks

    Get PDF
    corecore