110 research outputs found

    Phoneme and sentence-level ensembles for speech recognition

    Get PDF
    We address the question of whether and how boosting and bagging can be used for speech recognition. In order to do this, we compare two different boosting schemes, one at the phoneme level and one at the utterance level, with a phoneme-level bagging scheme. We control for many parameters and other choices, such as the state inference scheme used. In an unbiased experiment, we clearly show that the gain of boosting methods compared to a single hidden Markov model is in all cases only marginal, while bagging significantly outperforms all other methods. We thus conclude that bagging methods, which have so far been overlooked in favour of boosting, should be examined more closely as a potentially useful ensemble learning technique for speech recognition

    Unsupervised Stream-Weights Computation in Classification and Recognition Tasks

    Get PDF
    International audienceIn this paper, we provide theoretical results on the problem of optimal stream weight selection for the multi-stream classi- fication problem. It is shown, that in the presence of estimation or modeling errors using stream weights can decrease the total classification error. Stream weight estimates are computed for various conditions. Then we turn our attention to the problem of unsupervised stream weights computation. Based on the theoretical results we propose to use models and “anti-models” (class- specific background models) to estimate stream weights. A non-linear function of the ratio of the inter- to intra-class distance is used for stream weight estimation. The proposed unsupervised stream weight estimation algorithm is evaluated on both artificial data and on the problem of audio-visual speech classification. Finally the proposed algorithm is extended to the problem of audio- visual speech recognition. It is shown that the proposed algorithms achieve results comparable to the supervised minimum-error training approach under most testing conditions

    Audio-visual speech processing system for Polish applicable to human-computer interaction

    Get PDF
    This paper describes audio-visual speech recognition system for Polish language and a set of performance tests under various acoustic conditions. We first present the overall structure of AVASR systems with three main areas: audio features extraction, visual features extraction and subsequently, audiovisual speech integration. We present MFCC features for audio stream with standard HMM modeling technique, then we describe appearance and shape based visual features. Subsequently we present two feature integration techniques, feature concatenation and model fusion. We also discuss the results of a set of experiments conducted to select best system setup for Polish, under noisy audio conditions. Experiments are simulating human-computer interaction in computer control case with voice commands in difficult audio environments. With Active Appearance Model (AAM) and multistream Hidden Markov Model (HMM) we can improve system accuracy by reducing Word Error Rate for more than 30%, comparing to audio-only speech recognition, when Signal-to-Noise Ratio goes down to 0dB

    Multimodal speaker identification using an adaptive classifier cascade based on modality reliability

    Full text link

    Emotion Recognition based on Multimodal Information

    Get PDF

    Multimodal person recognition for human-vehicle interaction

    Get PDF
    Next-generation vehicles will undoubtedly feature biometric person recognition as part of an effort to improve the driving experience. Today's technology prevents such systems from operating satisfactorily under adverse conditions. A proposed framework for achieving person recognition successfully combines different biometric modalities, borne out in two case studies

    Face Active Appearance Modeling and Speech Acoustic Information to Recover Articulation

    Full text link
    corecore