23,861 research outputs found

    Smoothing the payoff for efficient computation of Basket option prices

    Get PDF
    We consider the problem of pricing basket options in a multivariate Black Scholes or Variance Gamma model. From a numerical point of view, pricing such options corresponds to moderate and high dimensional numerical integration problems with non-smooth integrands. Due to this lack of regularity, higher order numerical integration techniques may not be directly available, requiring the use of methods like Monte Carlo specifically designed to work for non-regular problems. We propose to use the inherent smoothing property of the density of the underlying in the above models to mollify the payoff function by means of an exact conditional expectation. The resulting conditional expectation is unbiased and yields a smooth integrand, which is amenable to the efficient use of adaptive sparse grid cubature. Numerical examples indicate that the high-order method may perform orders of magnitude faster compared to Monte Carlo or Quasi Monte Carlo in dimensions up to 35

    An Optimal Control Derivation of Nonlinear Smoothing Equations

    Full text link
    The purpose of this paper is to review and highlight some connections between the problem of nonlinear smoothing and optimal control of the Liouville equation. The latter has been an active area of recent research interest owing to work in mean-field games and optimal transportation theory. The nonlinear smoothing problem is considered here for continuous-time Markov processes. The observation process is modeled as a nonlinear function of a hidden state with an additive Gaussian measurement noise. A variational formulation is described based upon the relative entropy formula introduced by Newton and Mitter. The resulting optimal control problem is formulated on the space of probability distributions. The Hamilton's equation of the optimal control are related to the Zakai equation of nonlinear smoothing via the log transformation. The overall procedure is shown to generalize the classical Mortensen's minimum energy estimator for the linear Gaussian problem.Comment: 7 pages, 0 figures, under peer reviewin

    A Multilevel Approach for Stochastic Nonlinear Optimal Control

    Full text link
    We consider a class of finite time horizon nonlinear stochastic optimal control problem, where the control acts additively on the dynamics and the control cost is quadratic. This framework is flexible and has found applications in many domains. Although the optimal control admits a path integral representation for this class of control problems, efficient computation of the associated path integrals remains a challenging Monte Carlo task. The focus of this article is to propose a new Monte Carlo approach that significantly improves upon existing methodology. Our proposed methodology first tackles the issue of exponential growth in variance with the time horizon by casting optimal control estimation as a smoothing problem for a state space model associated with the control problem, and applying smoothing algorithms based on particle Markov chain Monte Carlo. To further reduce computational cost, we then develop a multilevel Monte Carlo method which allows us to obtain an estimator of the optimal control with O(ϵ2)\mathcal{O}(\epsilon^2) mean squared error with a computational cost of O(ϵ2log(ϵ)2)\mathcal{O}(\epsilon^{-2}\log(\epsilon)^2). In contrast, a computational cost of O(ϵ3)\mathcal{O}(\epsilon^{-3}) is required for existing methodology to achieve the same mean squared error. Our approach is illustrated on two numerical examples, which validate our theory

    Refraction-corrected ray-based inversion for three-dimensional ultrasound tomography of the breast

    Get PDF
    Ultrasound Tomography has seen a revival of interest in the past decade, especially for breast imaging, due to improvements in both ultrasound and computing hardware. In particular, three-dimensional ultrasound tomography, a fully tomographic method in which the medium to be imaged is surrounded by ultrasound transducers, has become feasible. In this paper, a comprehensive derivation and study of a robust framework for large-scale bent-ray ultrasound tomography in 3D for a hemispherical detector array is presented. Two ray-tracing approaches are derived and compared. More significantly, the problem of linking the rays between emitters and receivers, which is challenging in 3D due to the high number of degrees of freedom for the trajectory of rays, is analysed both as a minimisation and as a root-finding problem. The ray-linking problem is parameterised for a convex detection surface and three robust, accurate, and efficient ray-linking algorithms are formulated and demonstrated. To stabilise these methods, novel adaptive-smoothing approaches are proposed that control the conditioning of the update matrices to ensure accurate linking. The nonlinear UST problem of estimating the sound speed was recast as a series of linearised subproblems, each solved using the above algorithms and within a steepest descent scheme. The whole imaging algorithm was demonstrated to be robust and accurate on realistic data simulated using a full-wave acoustic model and an anatomical breast phantom, and incorporating the errors due to time-of-flight picking that would be present with measured data. This method can used to provide a low-artefact, quantitatively accurate, 3D sound speed maps. In addition to being useful in their own right, such 3D sound speed maps can be used to initialise full-wave inversion methods, or as an input to photoacoustic tomography reconstructions

    Controlled Sequential Monte Carlo

    Full text link
    Sequential Monte Carlo methods, also known as particle methods, are a popular set of techniques for approximating high-dimensional probability distributions and their normalizing constants. These methods have found numerous applications in statistics and related fields; e.g. for inference in non-linear non-Gaussian state space models, and in complex static models. Like many Monte Carlo sampling schemes, they rely on proposal distributions which crucially impact their performance. We introduce here a class of controlled sequential Monte Carlo algorithms, where the proposal distributions are determined by approximating the solution to an associated optimal control problem using an iterative scheme. This method builds upon a number of existing algorithms in econometrics, physics, and statistics for inference in state space models, and generalizes these methods so as to accommodate complex static models. We provide a theoretical analysis concerning the fluctuation and stability of this methodology that also provides insight into the properties of related algorithms. We demonstrate significant gains over state-of-the-art methods at a fixed computational complexity on a variety of applications

    Sequential Bayesian inference for implicit hidden Markov models and current limitations

    Full text link
    Hidden Markov models can describe time series arising in various fields of science, by treating the data as noisy measurements of an arbitrarily complex Markov process. Sequential Monte Carlo (SMC) methods have become standard tools to estimate the hidden Markov process given the observations and a fixed parameter value. We review some of the recent developments allowing the inclusion of parameter uncertainty as well as model uncertainty. The shortcomings of the currently available methodology are emphasised from an algorithmic complexity perspective. The statistical objects of interest for time series analysis are illustrated on a toy "Lotka-Volterra" model used in population ecology. Some open challenges are discussed regarding the scalability of the reviewed methodology to longer time series, higher-dimensional state spaces and more flexible models.Comment: Review article written for ESAIM: proceedings and surveys. 25 pages, 10 figure
    corecore