10,122 research outputs found

    Adaptive Seeding in Social Networks

    Full text link
    The algorithmic challenge of maximizing information diffusion through word-of-mouth processes in social networks has been heavily studied in the past decade. While there has been immense progress and an impressive arsenal of techniques has been developed, the algorithmic frameworks make idealized assumptions regarding access to the network that can often result in poor performance of state-of-the-art techniques. In this paper we introduce a new framework which we call Adaptive Seeding. The framework is a two-stage stochastic optimization model designed to leverage the potential that typically lies in neighboring nodes of arbitrary samples of social networks. Our main result is an algorithm which provides a constant factor approximation to the optimal adaptive policy for any influence function in the Triggering model

    Locally Adaptive Optimization: Adaptive Seeding for Monotone Submodular Functions

    Full text link
    The Adaptive Seeding problem is an algorithmic challenge motivated by influence maximization in social networks: One seeks to select among certain accessible nodes in a network, and then select, adaptively, among neighbors of those nodes as they become accessible in order to maximize a global objective function. More generally, adaptive seeding is a stochastic optimization framework where the choices in the first stage affect the realizations in the second stage, over which we aim to optimize. Our main result is a (11/e)2(1-1/e)^2-approximation for the adaptive seeding problem for any monotone submodular function. While adaptive policies are often approximated via non-adaptive policies, our algorithm is based on a novel method we call \emph{locally-adaptive} policies. These policies combine a non-adaptive global structure, with local adaptive optimizations. This method enables the (11/e)2(1-1/e)^2-approximation for general monotone submodular functions and circumvents some of the impossibilities associated with non-adaptive policies. We also introduce a fundamental problem in submodular optimization that may be of independent interest: given a ground set of elements where every element appears with some small probability, find a set of expected size at most kk that has the highest expected value over the realization of the elements. We show a surprising result: there are classes of monotone submodular functions (including coverage) that can be approximated almost optimally as the probability vanishes. For general monotone submodular functions we show via a reduction from \textsc{Planted-Clique} that approximations for this problem are not likely to be obtainable. This optimization problem is an important tool for adaptive seeding via non-adaptive policies, and its hardness motivates the introduction of \emph{locally-adaptive} policies we use in the main result

    Scalable Methods for Adaptively Seeding a Social Network

    Full text link
    In recent years, social networking platforms have developed into extraordinary channels for spreading and consuming information. Along with the rise of such infrastructure, there is continuous progress on techniques for spreading information effectively through influential users. In many applications, one is restricted to select influencers from a set of users who engaged with the topic being promoted, and due to the structure of social networks, these users often rank low in terms of their influence potential. An alternative approach one can consider is an adaptive method which selects users in a manner which targets their influential neighbors. The advantage of such an approach is that it leverages the friendship paradox in social networks: while users are often not influential, they often know someone who is. Despite the various complexities in such optimization problems, we show that scalable adaptive seeding is achievable. In particular, we develop algorithms for linear influence models with provable approximation guarantees that can be gracefully parallelized. To show the effectiveness of our methods we collected data from various verticals social network users follow. For each vertical, we collected data on the users who responded to a certain post as well as their neighbors, and applied our methods on this data. Our experiments show that adaptive seeding is scalable, and importantly, that it obtains dramatic improvements over standard approaches of information dissemination.Comment: Full version of the paper appearing in WWW 201

    Combining Traditional Marketing and Viral Marketing with Amphibious Influence Maximization

    Full text link
    In this paper, we propose the amphibious influence maximization (AIM) model that combines traditional marketing via content providers and viral marketing to consumers in social networks in a single framework. In AIM, a set of content providers and consumers form a bipartite network while consumers also form their social network, and influence propagates from the content providers to consumers and among consumers in the social network following the independent cascade model. An advertiser needs to select a subset of seed content providers and a subset of seed consumers, such that the influence from the seed providers passing through the seed consumers could reach a large number of consumers in the social network in expectation. We prove that the AIM problem is NP-hard to approximate to within any constant factor via a reduction from Feige's k-prover proof system for 3-SAT5. We also give evidence that even when the social network graph is trivial (i.e. has no edges), a polynomial time constant factor approximation for AIM is unlikely. However, when we assume that the weighted bi-adjacency matrix that describes the influence of content providers on consumers is of constant rank, a common assumption often used in recommender systems, we provide a polynomial-time algorithm that achieves approximation ratio of (11/eϵ)3(1-1/e-\epsilon)^3 for any (polynomially small) ϵ>0\epsilon > 0. Our algorithmic results still hold for a more general model where cascades in social network follow a general monotone and submodular function.Comment: An extended abstract appeared in the Proceedings of the 16th ACM Conference on Economics and Computation (EC), 201

    Probing Limits of Information Spread with Sequential Seeding

    Full text link
    We consider here information spread which propagates with certain probability from nodes just activated to their not yet activated neighbors. Diffusion cascades can be triggered by activation of even a small set of nodes. Such activation is commonly performed in a single stage. A novel approach based on sequential seeding is analyzed here resulting in three fundamental contributions. First, we propose a coordinated execution of randomized choices to enable precise comparison of different algorithms in general. We apply it here when the newly activated nodes at each stage of spreading attempt to activate their neighbors. Then, we present a formal proof that sequential seeding delivers at least as large coverage as the single stage seeding does. Moreover, we also show that, under modest assumptions, sequential seeding achieves coverage provably better than the single stage based approach using the same number of seeds and node ranking. Finally, we present experimental results showing how single stage and sequential approaches on directed and undirected graphs compare to the well-known greedy approach to provide the objective measure of the sequential seeding benefits. Surprisingly, applying sequential seeding to a simple degree-based selection leads to higher coverage than achieved by the computationally expensive greedy approach currently considered to be the best heuristic

    Seeds Buffering for Information Spreading Processes

    Full text link
    Seeding strategies for influence maximization in social networks have been studied for more than a decade. They have mainly relied on the activation of all resources (seeds) simultaneously in the beginning; yet, it has been shown that sequential seeding strategies are commonly better. This research focuses on studying sequential seeding with buffering, which is an extension to basic sequential seeding concept. The proposed method avoids choosing nodes that will be activated through the natural diffusion process, which is leading to better use of the budget for activating seed nodes in the social influence process. This approach was compared with sequential seeding without buffering and single stage seeding. The results on both real and artificial social networks confirm that the buffer-based consecutive seeding is a good trade-off between the final coverage and the time to reach it. It performs significantly better than its rivals for a fixed budget. The gain is obtained by dynamic rankings and the ability to detect network areas with nodes that are not yet activated and have high potential of activating their neighbours.Comment: Jankowski, J., Br\'odka, P., Michalski, R., & Kazienko, P. (2017, September). Seeds Buffering for Information Spreading Processes. In International Conference on Social Informatics (pp. 628-641). Springe

    Seeding with Costly Network Information

    Full text link
    We study the task of selecting kk nodes in a social network of size nn, to seed a diffusion with maximum expected spread size, under the independent cascade model with cascade probability pp. Most of the previous work on this problem (known as influence maximization) focuses on efficient algorithms to approximate the optimal seed set with provable guarantees, given the knowledge of the entire network. However, in practice, obtaining full knowledge of the network is very costly. To address this gap, we first study the achievable guarantees using o(n)o(n) influence samples. We provide an approximation algorithm with a tight (1-1/e){\mbox{OPT}}-\epsilon n guarantee, using Oϵ(k2logn)O_{\epsilon}(k^2\log n) influence samples and show that this dependence on kk is asymptotically optimal. We then propose a probing algorithm that queries Oϵ(pn2log4n+kpn1.5log5.5n+knlog3.5n){O}_{\epsilon}(p n^2\log^4 n + \sqrt{k p} n^{1.5}\log^{5.5} n + k n\log^{3.5}{n}) edges from the graph and use them to find a seed set with the same almost tight approximation guarantee. We also provide a matching (up to logarithmic factors) lower-bound on the required number of edges. To address the dependence of our probing algorithm on the independent cascade probability pp, we show that it is impossible to maintain the same approximation guarantees by controlling the discrepancy between the probing and seeding cascade probabilities. Instead, we propose to down-sample the probed edges to match the seeding cascade probability, provided that it does not exceed that of probing. Finally, we test our algorithms on real world data to quantify the trade-off between the cost of obtaining more refined network information and the benefit of the added information for guiding improved seeding strategies
    corecore