2,771 research outputs found

    Multistep predictions for adaptive sampling in mobile robotic sensor networks using proximal ADMM

    Get PDF
    This paper presents a novel approach, using multi-step predictions, to the adaptive sampling problem for efficient monitoring of environmental spatial phenomena in a mobile sensor network. We employ a Gaussian process to represent the spatial field of interest, which is then used to predict the field at unmeasured locations. The adaptive sampling problem aims to drive the mobile sensors to optimally navigate the environment while the sensors adaptively take measurements of the spatial phenomena at each sampling step. To this end, an optimal sampling criterion based on conditional entropy is proposed, which minimizes the prediction uncertainty of the Gaussian process model. By predicting the measurements the mobile sensors potentially take in a finite horizon of multiple future sampling steps and exploiting the chain rule of the conditional entropy, a multi-step-ahead adaptive sampling optimization problem is formulated. Its objective is to find the optimal sampling paths for the mobile sensors in multiple sampling steps ahead. Robot-robot and robot-obstacle collision avoidance is formulated as mixed-integer constraints. Compared with the single-step-ahead approach typically adopted in the literature, our approach provides better navigation, deployment, and data collection with more informative sensor readings. However, the resulting mixed-integer nonlinear program is highly complex and intractable. We propose to employ the proximal alternating direction method of multipliers to efficiently solve this problem. More importantly, the solution obtained by the proposed algorithm is theoretically guaranteed to converge to a stationary value. The effectiveness of our proposed approach was extensively validated by simulation using a real-world dataset, which showed highly promising results. © 2013 IEEE

    Secure Multi-Robot Adaptive Information Sampling with Continuous, Periodic and Opportunistic Connectivity

    Get PDF
    Multi-robot teams are an increasingly popular approach for information gathering in large geographic areas, with applications in precision agriculture, natural disaster aftermath surveying, and pollution tracking. In a coordinated multi-robot information sampling scenario, robots share their collected information amongst one another to form better predictions. These robot teams are often assembled from untrusted devices, making the verification of the integrity of the collected samples an important challenge. Furthermore, such robots often operate under conditions of continuous, periodic, or opportunistic connectivity and are limited in their energy budget and computational power. In this thesis, we study how to secure the information being shared in a multi-robot network against integrity attacks and the cost of integrating such techniques. We propose a blockchain-based information sharing protocol that allows robots to reject fake data injection by a malicious entity. However, optimal information sampling is a resource-intensive technique, as are the popular blockchain-based consensus protocols. Therefore, we also study its impact on the execution time of the sampling algorithm, which affects the energy spent. We propose algorithms that build on blockchain technology to address the data integrity problem, but also take into account the limitations of the robots’ resources and communication. We evaluate the proposed algorithms along the perspective of the trade-offs between data integrity, model accuracy, and time consumption under continuous, periodic, and opportunistic connectivity

    Decentralized Learning With Limited Communications for Multi-robot Coverage of Unknown Spatial Fields

    Full text link
    This paper presents an algorithm for a team of mobile robots to simultaneously learn a spatial field over a domain and spatially distribute themselves to optimally cover it. Drawing from previous approaches that estimate the spatial field through a centralized Gaussian process, this work leverages the spatial structure of the coverage problem and presents a decentralized strategy where samples are aggregated locally by establishing communications through the boundaries of a Voronoi partition. We present an algorithm whereby each robot runs a local Gaussian process calculated from its own measurements and those provided by its Voronoi neighbors, which are incorporated into the individual robot's Gaussian process only if they provide sufficiently novel information. The performance of the algorithm is evaluated in simulation and compared with centralized approaches.Comment: Accepted IROS 202

    Adaptive Robotic Information Gathering via Non-Stationary Gaussian Processes

    Full text link
    Robotic Information Gathering (RIG) is a foundational research topic that answers how a robot (team) collects informative data to efficiently build an accurate model of an unknown target function under robot embodiment constraints. RIG has many applications, including but not limited to autonomous exploration and mapping, 3D reconstruction or inspection, search and rescue, and environmental monitoring. A RIG system relies on a probabilistic model's prediction uncertainty to identify critical areas for informative data collection. Gaussian Processes (GPs) with stationary kernels have been widely adopted for spatial modeling. However, real-world spatial data is typically non-stationary -- different locations do not have the same degree of variability. As a result, the prediction uncertainty does not accurately reveal prediction error, limiting the success of RIG algorithms. We propose a family of non-stationary kernels named Attentive Kernel (AK), which is simple, robust, and can extend any existing kernel to a non-stationary one. We evaluate the new kernel in elevation mapping tasks, where AK provides better accuracy and uncertainty quantification over the commonly used stationary kernels and the leading non-stationary kernels. The improved uncertainty quantification guides the downstream informative planner to collect more valuable data around the high-error area, further increasing prediction accuracy. A field experiment demonstrates that the proposed method can guide an Autonomous Surface Vehicle (ASV) to prioritize data collection in locations with significant spatial variations, enabling the model to characterize salient environmental features.Comment: International Journal of Robotics Research (IJRR). arXiv admin note: text overlap with arXiv:2205.0642
    • …
    corecore