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Abstract

Multi-robot teams are an increasingly popular approach for information gathering in large geo-

graphic areas, with applications in precision agriculture, natural disaster aftermath surveying,

and pollution tracking. In a coordinated multi-robot information sampling scenario, robots

share their collected information amongst one another to form better predictions. These robot

teams are often assembled from untrusted devices, making the verification of the integrity of

the collected samples an important challenge. Furthermore, such robots often operate under

conditions of continuous, periodic, or opportunistic connectivity and are limited in their en-

ergy budget and computational power. In this thesis, we study how to secure the information

being shared in a multi-robot network against integrity attacks and the cost of integrating such

techniques. We propose a blockchain-based information sharing protocol that allows robots

to reject fake data injection by a malicious entity. However, optimal information sampling is a

resource-intensive technique, as are the popular blockchain-based consensus protocols. There-

fore, we also study its impact on the execution time of the sampling algorithm, which affects

the energy spent. We propose algorithms that build on blockchain technology to address the

data integrity problem, but also take into account the limitations of the robots’ resources and

communication. We evaluate the proposed algorithms along the perspective of the trade-offs

between data integrity, model accuracy, and time consumption under continuous, periodic, and

opportunistic connectivity.

1



Chapter 1

Introduction

In today’s era of automation, mobile robots are being deployed for collecting meaningful

information from an environment. This has high practical relevance in precision agriculture,

search and rescue, and monitoring, among other situations [12, 15, 38]. Such information

collection helps human users to make more informed decisions and actions. In particular, with

the increased information demand of precision agriculture, aerial or ground robots that collect

information about the state of a crop are quickly becoming a standard part of the toolkit of

modern farmers [27]. A single robot usually does not have enough capabilities to complete

all the relevant tasks and, therefore, multiple low-cost robots are used. As these robots collect

and transmit mission critical information to the operation of the farm, the integrity of the

collected information becomes a critical concern. Similar to other agricultural machinery, the

usage of such robots fluctuates over time. It is thus likely that at any given moment, a farmer

might deploy a fleet of robots that are a mix of owned, rented, and borrowed. With such a

mix of robots with different provenances, the trustworthiness of individual robots cannot be

guaranteed through physical means. Additionally, the multi-robot setting typically assumes

the observed data is shared among the robots, which is vulnerable to cyber-attacks. Such

attacks can have significant financial and ecological impact [14]. In precision agriculture,

farmers use the robots’ collected data to decide where to spray herbicides in the field to kill

weeds. If a malicious entity breaches the integrity of the collected data, the farmers could

unintentionally spray herbicides on the crops rather than the unwanted vegetation.

In this thesis, we study such a multi-robot coordination problem, namely multi-robot

2



3

information sampling, where the objective is the following: given n mobile robots and a

budget B, plan n B-length paths for the robots such that the collected information is maxi-

mized [10, 11, 26, 34, 40]. Each robot is equipped with an information collection sensor (e.g.,

camera, soil salinity meters) and senses information along its path. The information about

the environment is represented in the form of a scalar field, while the knowledge model built

by the robots is implemented through a Gaussian Process (GP) [29] that integrates all trusted

observations made by the robots. The plan is adaptive in the sense that past observations made

by the robot(s) affect the future decision-making about where to collect more information.

In a multi-robot system, a single robot’s future planning is not only affected by its own past

sensed data, but also by the observations made by the other robots. To plan such optimal

paths is proven to be NP-Hard and, therefore, greedy heuristics for navigation are popularly

employed [10, 15, 20, 37]. The problem of multi-robot information collection is under active

study but, to the best of our knowledge, how to formally maintain the integrity of the collected

information against adversarial influence (see Fig. 1.1) has not yet been studied.

To this end, we propose a blockchain-based secure multi-robot information sampling

framework that is resilient against such data integrity attacks. We employ the popular blockchain

consensus protocol Proof-of-Work (PoW) to help the robots make decisions based only on the

untampered data [6, 13, 17, 23]. Tampered data is detected using the aforementioned consen-

sus protocol and removed from the database. However, integrating such a blockchain-based

security protocol comes at a cost – PoW is known to be resource-intensive and will drain

the robots’ on-board power sources. We thus also analyze the additional energy consumption

implied by secure sampling, assessing the cost of our achieved resilience.

Additionally, algorithms used for cryptocurrencies do not directly apply to teams of robots.

Because the paths of the robots depend on the collected data (for instance, multiple robots need

to converge to explore an area with a disease outbreak), validation of the data needs to be done

in real time (e.g., while the drones operate in the air). This creates new challenges with re-

gards to computing capacity and energy usage. Moreover, also in contrast to cryptocurrencies,

the connectivity between the nodes might be periodic (i.e., nodes communicate on a shared

network only during scheduled times, separated by unconnected autonomous operation) or

opportunistic (i.e., nodes communicate only when they fall within range of each other in the

course of movement), along with being continuous [1]. For information collection, we employ
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a popular greedy strategy that is known to yield theoretically-bounded performance [5, 10, 37].

However, it is worth noting that our proposed security technique is generic in nature and can

easily be integrated with more sophisticated algorithmic sampling approaches. We tested our

proposed framework in a simulation with up to ten robots and benchmarked the results against

an insecure baseline, where data integrity attacks are not prevented. This thesis considers sce-

narios in which the robots have access to continuous, periodic, or opportunistic connectivity

and performances of the proposed algorithms are investigated on a variety of scenarios with

single or multiple attackers. An illustration is shown in Fig. 1.1.

{v1, 12}

{v4, 9.5}

{v2, 10}

{v3, 10.2}
{v 1,

 15
.7}

{v1 , 15.7}

{v1, 15.7}

(a)

(b) (c)

Figure 1.1. (a) An instance of a data integrity attack studied using blockchain-based security tech-
niques under continuous connectivity (CC) assumptions; an assumed malicious robot (red circled) may
send tampered data to its neighbor robots (green circled) in order to degrade future estimates of the
underlying information field. We also consider the problem when communication resources are more
constrained, specifically under the scenarios of (b) periodic connectivity (PC), in which robots share
measurements only in a subset of the rounds (e.g., every three iterations), and (c) opportunistic connec-
tivity (OC), in which robots share measurements possibly only among a subset of the nodes (e.g., those
within a range of 4 units).
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In summary, the main contributions of this thesis are:

• To the best of our knowledge, this is the first work that studies the secure multi-robot in-

formation sampling problem with continuous, periodic, and opportunistic connectivity,

which is significant due to its sheer practical relevance.

• To the best of our knowledge, this is the first integration of information sampling and

blockchain-based security techniques, specifically the consensus protocol PoW, and

studying via simulations the benefit and cost of each.

• We propose and validate practical data integrity algorithms based on the blockchain that

are specifically designed to be deployable on robots.

• We study the algorithms along the novel perspective of the trade-offs between data in-

tegrity, energy consumption and model estimate error.



Chapter 2

Background

Information gathering using a single or multiple robots has received considerable attention in

recent literature [4, 9, 10, 11, 22, 24, 38]. In an informative path planning setting, the objective

of the robot(s) is to plan a maximally informative path within a given path-length budget from

a start to a goal location, where the robots can be retrieved by human operators [16, 26, 34, 40].

[16] introduced rapidly exploring information gathering (RIG) algorithms that combine ideas

from sampling-based motion planning with branch and bound techniques to achieve efficient

information gathering in continuous space with motion constraints, while Wei and Zheng [40]

proposed a novel informative path planning (IPP) algorithm using reinforcement learning.

In particular, Singh et al. [34] developed an efficient Single-robot Informative Path planning

(eSIP), which is an approximation algorithm for efficient planning of informative paths that

near-optimally solves the NP-hard problem of maximizing the collected information with an

upper bound on path-cost.

On the other hand, in a lifelong learning and sampling scenario, such as studied in this

thesis, the robot(s) would be given a budget for a particular day’s mission and the objective is

to collect the maximum information possible within the daily budget [9, 24, 30]. On this topic,

[30] introduced the ideas of multi-agent learning and mean field reinforcement learning for

multi-robot informative path planning, while integrating recurrent neural networks with mean-

field reinforcement learning. Banfi et al. [4] developed two novel asynchronous strategies that

work with arbitrary communication models. Viseras et al. [38] have proposed created a non-

myopic multi-robot cooperation algorithm for information gathering that could handle the

6
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motion constraints of robots, as well as team constraints like communication restrictions. On

the other hand, assuming that the obstacles in the environment are not known a priori, Dutta et

al. [9] proposed continuous region partitioning of the environment into Voronoi components

to improve load balancing between robots.

In this thesis, we employ a myopic greedy entropy maximization technique for sam-

pling, which has been shown in the literature to be efficient [5, 10, 20, 37]. Cao, Low, and

Dolan [5] presented two approaches to efficient information-theoretic path planning that ad-

dress a trade-off between active sensing performance and time efficiency. Krause, Singh, and

Guestrin [20] proved that the exact optimization of mutual information is NP-complete, and

provided a polynomial-time approximation algorithm that is within (1 − 1/e) of the max-

imum mutual information configuration (the optimum). These information gathering tech-

niques often use a Gaussian Process regressor to model the underlying ambient phenomena,

and an information-theoretic metric such as Entropy or Mutual Information is used to drive the

robot(s) to meaningful locations where the information gain is maximized [25, 34, 35]. Ma,

Liu, and Sukhatme [25] tested an informative planning and online learning method that al-

lowed an autonomous marine vehicle to effectively perform persistent ocean monitoring tasks

with a framework that iterated between a planning component and a sparse Gaussian Process

learning component. Singh, Krause, and Kaiser [35] presented a non-myopic algorithm, called

NAIVE, for informative path planning using multiple robots.

As different parts of the environment might contain significantly different properties of

the same ambient phenomena, it is often a good idea to deploy a multi-robot system across

disjoint sub-regions in the environment [11, 19, 24]. In [11], the authors proposed a decen-

tralized MDP-based online coordination mechanism that allows a robot to collect maximal

information even under control uncertainty. The authors in [19] investigated a multi-robot

coordination approach for informative sampling with autonomous underwater vehicles, while

[24] presented an adaptive sampling algorithm for learning the density function in multi-robot

sensor coverage using Mixture of Gaussian Processes models. Researchers have only begun to

look into reinforcement learning-based information sampling technique while using the Gaus-

sian Process as an information modeling tool. One of the first such study with a multi-robot

system is due to Said et al. [30], where a deep Q-learning technique has been used with the

help of a recurrent neural network.
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As a robot’s future decision-making, as well as path planning, depend on the previously

collected data (locally and communicated by others), tampered data can create havoc. The

preservation of data integrity via a blockchain-based solution using the Proof-of-Work (PoW)

consensus protocol was examined in [36], each assuming the robots enjoyed continuous con-

nectivity (CC). PoW is a popular and effective choice in the cryptocurrency industry [28], but it

is known to be resource intensive [7, 8] and, in turn, raises new challenges for resource-limited

multi-robot information collection. For example, De Vries [7] noted that the Bitcoin network,

which uses PoW as its consensus protocol, consumed at least 2.55 gigawatts of electricity in

2018 and could potentially consume 7.67 gigawatts in the future, making it comparable to

countries such as Ireland (3.1 gigawatts) and Austria (8.2 gigawatts).

Most of the multi-robot information collection techniques in the literature assume the com-

munication among the robots is always available, and therefore, the coordination among them

is continuous. In this thesis, we follow this principle by first assuming continuous connectivity

among the robots as illustrated in Fig. 1.1. Exploration while maintaining such connectivity

under limited communication ranges is studied in [10], using a graph-theoretic technique.

For conflict-free, multi-robot informative path planning, the authors in [26] used a bipartite

matching-based technique while adapting it to handle spatio-temporal dynamics. While CC

is the most common assumption in literature when it comes to multi-robot information col-

lection techniques, it is not the most realistic one. There are many scenarios where the robots

will not necessarily be in constant contact. Additionally, because PoW is incredibly resource-

intensive, CC may only worsen the performance issues. On the other hand, if the robots were

to connect only periodically (PC), the optimal multi-robot re-connection planning problem

has been proved to be NP-hard even when the environment is modeled as a tree [3]. Heuristic

solutions are presented in the literature for such settings [3, 15, 22]. Specifically, Hollinger

and Singh [15] introduced the concept of multi-robot informative path planning using PC

(MIPP-PC), while Lauri, Heinänen, and Frintrop [22] developed the ρ-decentralized partially

observable MDP model, which outperformed previous heuristics.

The final connectivity technique that we consider is opportunistic (OC), where the robots

are given a limited range for communication, restricting coordination with others to only when

another robot is in the vicinity. As this does not pose any connectivity policy restrictions and

most closely resembles most real-world situations, this strategy has recently been adopted in
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general multi-robot exploration studies [2, 9, 11]. How to coordinate a multi-robot system to

clear blocked paths was addressed in [2], where a collaborating robot would need to interrupt

its current exploration and move to a different location to collaboratively clear a blocked path.

A survey and analysis of various connectivity models for multi-robot exploration and coordi-

nation can be found in [1]. However, none of the aforementioned works consider adversarial

influence, such as tampering with measured data, on multi-robot information collection.



Chapter 3

Problem Setup

We have a set of n robots R = r1, r2, · · · rn. The robots are homogeneous, localized us-

ing a GPS, and move in a shared environment. The environment is discretized into a graph

Gp = {V,E}, where the node set V represents the information collection locations and the

connections among them are denoted by the edge set E. Each robot ri has its unique sub-

region for exploration, Vi, and Vi ∩ Vj = ∅. Vi can be calculated in a pre-processing stage by

applying Voronoi partitioning [39] or K-medoids clustering [18]. Without loss of generality,

we assume that ∪ni=1Vi = V . The action set of the robots is denoted by A. For example, in

a 8-connected grid Gp, A will hold the motor commands to move to all the eight neighbors.

ri is equipped with an on-board sensor using which it can sense and collect information (e.g.,

camera). The robots’ observations are modeled to be noisy. A robot ri starts from a node

v0i ∈ Vi. The robots are sensing an ambient phenomenon Z that varies with the location, with

Z(v0i ) being the (scalar real) value at node v0i .

With CC, we assume that a robot ri can communicate with rj,∀rj ∈ R \ ri after collecting

data at any node, i.e., the robots maintain a continuous connectivity throughout the explo-

ration. The algorithmic details of maintaining such a network is out of scope for this work; an

example of techniques that can be used are the ones proposed in [10]. In PC, the robots will

form a connected network after every F cycles named coordination frequency [15, 22]. The

reader is referred to [3, 15] to see how such reconnections can be established periodically. In

OC, the robots are not guaranteed to form connected communication networks, instead com-

municating if and when two or more robots are within each other’s communication ranges (C).

10
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One should note that with OC, one robot might never communicate with another robot during

the exploration, and it is also possible that the robots form disconnected sub-networks [9, 11].

We use a Gaussian Process (GP) to model the uncertain environment. Let X denote a

Gaussian random vector of length |V | with prior mean vector µ and covariance matrix Σ,

where µ and Σ represent the prediction in node set V and its corresponding uncertainty, re-

spectively [29]. The volumetric measure of this uncertainty is calculated by an information

theoretic metric, (differential) entropy, which is formally defined as

H(X) =
1

2
log |Σ|+ |V|

2
log(2πe). (3.1)

Each robot starts with a common initial GP model, GP 0, and then takes measurement Z(v0i )

at the start node v0i ∈ V . We assume the measurements are subject to additive white Gaussian

noise ϵ ∈ N (0, σ). The updated local GP, GPi, for robot ri is then given by the posterior

statistics:

Σi =Σ− ΣC
(
v0i
)′
(C

(
v0i
)
ΣC

(
v0i
)′
+

σ2
n)

−1C
(
v0i
)
Σ

µi =µ+ Σ0
iC

(
v0i
)′
(Z(v0i )−C

(
v0i
)
µ)/ϵ,

(3.2)

where C (v0i ) denotes the length-|V | row vector of all zeros except for a one in component v0i
and C (v0i )

′ is its matrix transpose. The reader is referred to [11] for more details.

It is a standard assumption in kernel-based parametrizations of GPs that the correlation

between two nodes are inversely proportional to the distances between them [11, 20, 29]. We

exploit this property when computing entropy by approximating the computationally intensive

matrix determinant |Σ| by the product of the per-node variances (σ2
v) along the diagonal of Σ.

In turn, the associated entropy H(X) decomposes additively across the nodes, each per-node

term (H(Xv)) given by

H(Xv) =
1

2
log

(
2πeσ2

v

)
. (3.3)

Our proposed techniques utilize these per-node entropies, their sum (via the Hadamard
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inequality) serving as upper bound for the true global entropy H(X), to drive the robots to

opportune locations for information collection. Each robot’s local GP model, GPi, is initial-

ized with a training dataset D, and the prior statistics are calculated before it is deployed in

node v0i ∈ Vi. After deployment, each robot first collects the information in v0i and this ob-

served data is used along with D to calculate the per-node rewards using using Eq. 3.3. In a

greedy fashion, ri then chooses the next adjacent node v∗i ∈ Vi that provides the maximum

information,

v∗i = arg max
v∈adj(v0i )

H(v|D ∪ Z(v0i )), s.t. v ∈ Vi. (3.4)

In the absence of communication, each robot will continue this sense − and − move cycle

until it runs out the given budget B. Such greedy strategies have been observed to be efficient

in the literature, and in certain conditions (albeit not being satisfied here) even provably so [5,

20, 34].



Chapter 4

Algorithms

It is not the objective of this thesis to develop a new algorithm for information sampling; rather,

we study how an integrity-preserving blockchain-based protocol can be integrated with the

information collection framework presented in [1, 10, 37]. This thesis is interested in study-

ing the resilience against data integrity attacks within the constrained communication setting,

specifically under continuous (CC), periodic (PC) and opportunistic connectivity (OC).

4.1 PoW Consensus Protocol in CC

In the absence of a security protocol, each robot takes the received information from the other

robots into account and updates the local GP model using Eq. 3.2 (see Algo. 1). One or

more malicious entities can attack this data sharing system via data tampering attempts and

denial-of-service (DoS) [14, 21].

To prevent other robots from incorporating such fake data in their future decision-making,

we have used a blockchain-based security protocol. Blockchains are tamper-resistant digital

ledgers that the robots maintain in a distributed fashion [31]. In a blockchain, the data is stored

in discrete units, called blocks, that are linked (chained) to each other by having the hash of

one block be part of the data of the next block. Each robot ri maintains a local blockchain Ci.

Each block bidx ∈ Ci contains the following components < D, T, idx,N, Hlast >, where D

denotes the collected measurement(s), T represents the current timestamp, idx is the index of

the block, N is an integer called nonce, and finally, Hlast represents the previous block bidx−1’s

hash. We particularly use blockchains because of their chain data structure – if an attacker is

13



4.1. POW CONSENSUS PROTOCOL IN CC 14

Algorithm 1: Secure Information Sampling with PC and OC
1 /* Every robot follows a <move-sense-communicate-estimate> cycle */
2 ri calculates the next best location v∗i to move to;
3 while budget left do
4 Move to v∗i and Sense information Z(v∗i );
5 Create a block bidx that includes v∗i and Z(v∗i );
6 Add bidx to Ci and broadcast it 1) every cycle with OC, or 2) periodically every F cycle

with PC;
7 C̃ ← receive similar blockchains from 1) ∀rj ∈ R \ ri with PC, or 2) ∀rj ∈ R̄ with OC;
8 Secure. Decide to add the measurements from C̃ to Ci or not using PoW;
9 Estimate. update GPi with the new data in Ci (Eq. 3.2) and update the entropies (Eq. 3.3);

10 Select v∗i based on the updated entropies (Eq. 3.4);

able to modify D in block bx, the hash of the block will also change, and therefore, it will then

not match Hlast in bx+1.

After ri measures Z(v∗i ) at v∗i , it puts them in D. The nonce is initially set to zero. The

robot creates a block with it and finds its corresponding hash. To mine this block, ri checks

whether the hash has the required difficulty or not. The difficulty of a block is represented by

the leading zeros in the hash – the higher the number of zeros in the beginning of the hash, the

more difficult it is to mine. We use an iterative nonce setting approach, i.e., if the nonce does

not produce a hash with the desired difficulty, we increase the nonce by one. This process

continues until the desired nonce, and more importantly, the desired difficulty in the corre-

sponding hash is found. Once this mining process is over, the block is placed into ri’s local

blockchain Ci. With CC, the robots share their newly created blocks among each other after

every cycle of sense and measurement. The robots replace their local blockchains with the re-

ceived blockchains if the blocks are validated, and as a result, at the end of each coordination

cycle, every robot will have other robots’ valid new blocks along with their existing blocks in

their local blockchains (see Algo. 2). Note that the verification of the hash is straightforward.

A robot looks at the nonce in a particular block, finds its corresponding hash, and checks

whether the hash has the desired difficulty level. If not, the block is rejected; otherwise, it is

validated. Naturally, increasing the difficulty reduces the probability of it being compromised

while the time and energy required by the robots increase significantly.
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Algorithm 2: Multi-robot Proof-of-Work (PoW) Consensus Protocol
Input: Ci ← ri’s local blockchain;
Crj ← received blockchain from rj ;

1 if len(Crj ) > len(Ci) AND CHECKCHAINVALIDITY() then
2 Ci ← Crj ;

3 Procedure checkChainValidity()
4 H(bidx)← hash of block bidx;
5 Hlast(bidx)← hash of the previous block bidx−1 stored in bidx;
6 for each block b ∈ Crj do
7 if ISVALIDBLOCK(bidx) is false OR Hlast(bidx) ̸= H(bidx−1) then
8 return false

9 return true

10 Procedure isValidBlock()
11 d(bidx)← difficulty of block;
12 dmin ← minimum valid difficulty;
13 if d(bidx) ≥ dmin then
14 return true
15 else
16 return false

4.2 PoW Consensus Protocol in PC and OC

With PC, ri creates D with the last F collected measurements. As the robots coordinate peri-

odically, they do not get a chance to share their collected information every cycle. Therefore,

each block will contain F measurements in PC whereas it contained only one in CC. The

other components in the block are calculated in the same way as in CC. Having a larger block

size has one advantage – the robots do not need to share information in every cycle, and there-

fore, the communication and mining overheads are significantly less. On the other hand, in a

bandwidth-limited environment, sharing a larger block might be prohibitive. Furthermore, as

the robots are not aware of others’ collected data, the quality of their informative paths might

be sub-par compared to CC.

With OC, when two or more robots R̄ ⊆ R come within each other’s communication

ranges, they share their local blockchains and the coordination happens in the same way as

in CC. Each robot ri ∈ R̄’s local blockchain contains its observed data and any valid data it

has received earlier from rj ∈ R. As the robots are collecting data from disjoint sub-regions

in the environment, they might have mutually exclusive local blockchains. This might lead to
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orphan blocks.

An orphan block is a block that was mined and placed in the blockchain at some point.

However, over time, a new blockchain was generated that did not include this block, leaving

it abandoned. Orphan blocks only exist in OC. For example, suppose robot ri has a local

blockchain containing the following blocks {a, b, c, d}, and Robot rj has a local blockchain of

{a, b, c, e, f, g}. Next, these two robots come within C distance. Following our algorithm, ri

will accept the longer blockchain of rj , causing block d to be abandoned, namely an orphan

block. While Block d in particular will no longer be used, the data within it will be extracted

and put back into a memory buffer known as unconfirmed data that ri maintains in OC for

such scenarios.

Note that this is not the same as block d; the data D in it is the same, but the previous

hash, the timestamp, and the nonce will all be different. Also, block d was still a valid block,

but was left out of the blockchain simply due to asynchronous coordination in OC and not

because of malicious data. Although the data in block d is preserved, the block itself will stay

orphaned, meaning the mining effort put into it is lost.

Lemma 1. Using our proposed algorithm, the robots will not lose any observed data.

Proof. Consider a scenario with two robots ri and rj and suppose at a particular point in

time ri’s blockchain is larger than rj’s blockchain. Additionally, rj’s blockchain contains a

particular observed data x. We claim that the observed data x will not be lost after ri and rj

coordinate. Assume the contrary, which is that data x will be lost. If ri’s blockchain does

contain x, then x cannot possibly be lost, because when rj accepts ri’s blockchain, x will be

among the accepted data. On the other hand, if ri’s blockchain does not contain x, rj will

take x and place it back in its unconfirmed data, a data structure that contains data not yet

included in the blockchain. Once rj accepts ri’s blockchain, it will then insert x at the end of

the blockchain after mining. If rj has not already mined this cycle, x will be restored to its

blockchain, so x cannot possibly be lost in this case. However, if rj has already mined this

cycle, x will be restored to the blockchain on the next cycle. It follows that it is impossible for

x to be permanently lost.



Chapter 5

Experiments

5.1 Settings

We have implementing the proposed secure information sampling techniques with up to 10

robots in MATLAB and Python. The robots are placed randomly in an 8-connected 14 × 14

grid environment. The robots can only visit up to 20 nodes within their own sub-regions

Vi. We have sampled our underlying ground truth information for 196 grid locations from a

zero-mean Gaussian random vector, where the covariance matrix represents an exponential

kernel function: specifically, for any pair of nodes vs and vt, the covariance between them is

represented by

β2 exp (−||vs − vt||/ℓ)

where hyperparameters β > 0 is the local standard deviation and ℓ is the exponential rate of

diminishing covariance between increasingly distant nodes. In our experiments, β and ℓ are

set to 1 and 25, respectively. The additive white Gaussian noise ϵ ∈ N (0, 0.25).

The adversarial influence is modeled as commanding the same subverted node to falsify

its measurements only periodically, leaving that node’s measurements and behavior unaltered

otherwise. More specifically, all experiments with adversarial influence assume one or more

nodes are subverted, falsifying measurements once every four rounds. The falsification pro-

cess itself is also simplistic; specifically, the adversary chooses a magnitude uniformly from

the range [−10,+10].

We compare our proposed PoW-based algorithm with CC, PC, and OC assumptions against

17
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two benchmarks:

• No Attack. In this scenario, there is no malicious robot in the system, and therefore,

there is no chance of data tampering;

• Insecure. In this scenario, data integrity attacks are similar to the attacks on our algo-

rithms, however, there is no security protocol in place to protect against such attacks.

5.2 Results

First, we are interested in investigating the effect of the security attacks on the quality of the

information model estimated by the robots. To analyze the effects of data integrity attacks

on multi-robot information sampling, we investigate the mean square error (MSE) metric that

represents how close to the ground truth the predicted information model is. The results are

presented in Figs. 5.1 and 5.2(a). The shaded regions indicate the standard deviations.

5.2.1 Single Attacker

5.2.1.1 CC MSE

For all of PoW, we have varied the difficulty level between [1, 5], i.e., between one and five

leading zeros in the hash. We see that with more robots, the average effect of the data integrity

attacks on MSE usually minimizes. As we only have one robot that sends tampered data to the

other robots, with n = 2, that accounts for 50% robots being malicious, whereas with n = 10,

it only accounts for 10%. For example, the final MSE for CC with these two values of n are

0.78 and 0.19, respectively.

In any case, the MSE decreases as the robots make more observations [5, 10, 20]. However,

if we have an insecure system and there is an integrity attack, we see the MSE values jump

to higher numbers any time there is an injection of tampered data. As the attack happens

periodically, the spikes in the plots are also periodic. We also observe that if the PoW difficulty

is low, e.g., 1, the attacker might get ‘lucky’ due to the relatively high probability of the hash

being found and, consequently, the security breaking down. Since there are 16 possible hash

values per digit and only one digit is an acceptable value for the prefix (0), the probability
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that the hash satisfies the difficulty 1 condition is 1
16

. For difficulty 2, this would probability

is ( 1
16
)2 = 1

256
; for difficulty 3, ( 1

16
)3 = 1

4096
, and so on. In our experiments, there were a total

of 375 attacks with difficulty level 1; 28 of those attacks succeeded in successfully tampering

the data and letting other robots use that for estimation, which has a probability of 28
375
≈ 1

13.4
.

This is illustrated by an MSE spike for n = 6 in Fig. 5.1(d). However, when we increase the

level of the difficulty, e.g., 5, the MSE values coincide with the MSE values in the No Attack

scenario.

5.2.1.2 PC MSE

When we compare the MSE results for PC against the Insecure version, PC almost always

performs statistically significantly better. Similar to CC, the blockchain-based proposed tech-

nique will occasionally fail to safeguard against the data tampering attempts if the selected dif-

ficulty is low, e.g., 1. When we compare the PC results with varying F , the robots performed

better, when they communicated more often (e.g., F = 2 is better than F = 5). However, an

interesting thing to note is that while this trend was consistent, they rarely resulted in a large

difference in MSE. We believe that the small range in MSE results due to various frequencies

are because that the robots that coordinate more often have more opportunities to adapt their

plans to explore better (see Fig. 5.2(a) for reference). In general, the closer the connectivity

model is to CC, the better PC performs. Note that this also results in a higher computation

time, which we will discuss later in this section.

5.2.1.3 OC MSE

Similar to CC and PC, the OC model almost always performs statistically significantly better

than the Insecure version (except for a few cases with difficulty 1) due to the reasons discussed

earlier. We have found that with a higher C, the MSE is lower than compared to a smaller C.

The difference in MSE with various communication ranges is significant. For example, with

difficulty 4 and n set to 4, the final MSE value with C = 4 is 0.33, whereas with C = 12, it

is 0.14. In nearly every experiment, C = 12 outperformed C = 4 by a statistically significant

amount. C = 8 resembled C = 12 when there were 8 and 10 robots, with a small difference

for 6 robots and a clear difference at the edge of statistical significance for 4 robots. With 2

robots, the MSEs with C = 8 seem more similar to C = 4 than C = 12. This trend is largely
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1. Single Attacker: MSE comparison (lower the better) among various connectivity models
used: (a,d) CC with n = 10 and 6; (b,e) OC with n = 10 and 6; and (c,f) PC with n = 10 and 6.

due to a transitive feature in the communication of our robots. If Robot B can communicate

with both Robot A and Robot C, Robot A and Robot C can communicate with one another
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(a) (b)

(c) (d)

Figure 5.2. Single Attacker: (a) Comparison of MSE values among all the connectivity models with
n = 8; Run time comparison (lower the better) between our proposed secure techniques and the imple-
mented benchmark algorithms: (b) CC; (c) PC; and (d) OC.

using Robot B as an intermediary, even if Robot A and Robot C are out-of-range on their own.

Due to this property, when there are more robots, communication range matters less since two

robots out-of-range can still communicate if there is a third robot in range of the other two.

So having a range of 8 instead of 12 made a much larger difference (up to 5.5 times when n

increases from 4 to 8 with difficulty 4).

5.2.1.4 Summary MSE

When all three connectivity models are compared together (Fig. 5.2(a)), CC always performed

the best. This is expected, as CC is essentially a specialized PC and OC where the robots

meet every iteration and have infinite range. Both PC and OC performed significantly worse
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when faced with more constrained conditions, i.e., reduced meeting frequencies for PC and

reduced range for OC. In particular, OC performed the worst among the three connectivity

models when there were few robots since that meant they would rarely communicate. PC

always performed noticeably worse than CC as the robots with CC always communicate and

coordinate, and therefore, the robots could adapt their joint paths on a finer scale. For OC,

however, this was not the case. When C and n are high, OC became almost identical to CC

due to all the robots sharing their collected data after every round and fine-tuning their paths.

5.2.1.5 Time

As discussed previously, although the PoW consensus protocol allows us to achieve secure

information collection, it also consumes a significant amount of resources. To measure such

effects, we investigate the run time metric next. We see that with a higher difficulty level in

PoW, the run time significantly increases. For example, with 10 robots (n = 10) and difficulty

1, the run time is 19.18 seconds, whereas with difficulty 5, the run time is 694.74 seconds.

This is due to the fact that each attempt at satisfying a difficulty 1 hash has a 1
16

chance of

succeeding, while satisfying a difficulty 5 hash has a ( 1
16
)5 = 1

1,048,576
≈ 9.54× 10−7 chance,

indicating far more attempts must be made. On the other hand, in the Insecure scenario, the

corresponding run time is 15.02 seconds. We can see that there is an increment of 46.25 times

in the run times to protect the information against data tampering attempts.

PC always outperformed CC (Fig. 5.2(b-d)). Furthermore, with PC, the run time is lower

in cases when robots coordinate less often. For example, with n = 10 and difficulty 4, the run

times for PC with F = 2 and 5 are 34.04 and 15.50 seconds, respectively, while the run time

for CC is 59.76 seconds. On the other hand, OC always performed better than CC, but worse

than PC. Additionally, while OC usually did slightly better when range was greater, in some

cases, this was not followed. This is because that there were certain occasions when the time

saved from coordinating less often was counterbalanced by the time spent redoing PoW for

the orphan blocks.
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(a) (b)

(c) (d)

Figure 5.3. Multiple Attackers: MSE comparison (lower the better) among various connectivity models
used: (a) CC; (b) PC; (c) PC zoomed in on our algorithm’s results; and (d) OC.
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Figure 5.4. Run time comparison (lower the better) among various connectivity models used with
Multiple Attackers: (a) CC; (b) PC; (c) OC; and (d) Effect of various Baud Rates and message sizes on
run time (n = 2).



5.2. RESULTS 25

5.2.2 Multiple Attackers

For CC, PC, and OC, the difference in their MSE values with 1, 2, and 4 malicious robots

was small (Fig. 5.3). As the objective of PoW is to ensure that attacks do not affect accu-

racy, though having more attacks did lead to a slightly worse performance in most cases, the

difference was insignificant. For example, with one malicious attacking robot, n = 10, and

F = 3 in PC, the final MSE value is 0.131, whereas with four attacking robots, the MSE

value is 0.133. This slight difference is likely because even if the attacker was unable to add

fake data to the blockchain, it still deleted all of the compromised robots’ unconfirmed data

while degrading the information model. In terms of time, more malicious robots in the sys-

tem led to a small decrease in run time. This likely because that while PoW takes up the

majority of the computation time, another time-consuming operation is transferring the data

from one blockchain to another. Since this transfer of data occurs less often due to more at-

tacks, run time decreases as fewer uncompromised robots transfer the blockchain data among

themselves.

5.2.3 Effect of Baud Rate

Finally, we are interested in investigating how with baud rate – data transmission rate in a

communication channel – the communication time changes. For this, we used Webots, a high-

fidelity 3D simulator, where one robot is set up to send data and the other is set up to receive

it. In CC, coordination happens after every round of data collection, and therefore, a message

in CC containing a block is smaller than when compared to PC, where the robots share the

past F collected data in a single message. The result is presented in Fig. 5.4(d). When the

baud rate is set to infinity, a standard assumption in multi-robot coordination studies [9, 10, 11,

19, 24, 38], the communication time is almost negligible, the maximum being 0.13 seconds.

On the other hand, when it is restricted to be only 6 bits per second, to send a 192-byte

message (the equivalent of putting the past eight observations in a message), it takes 257.40

seconds, whereas for a 24-byte message, the communication time is 33.40 seconds. This

result is significant in terms of CC, PC, and OC comparisons. Although PC needed a fraction

of the computation time of CC, it might not be a good choice in case of a limited-bandwidth

environment. This is also partially true for OC as the communication among the robots is not
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algorithmically determined, meaning the robots may need to exchange large chunks of data if

and when they come within each other’s communication ranges.

The research work presented in this thesis has been published in [32, 33].



Chapter 6

Conclusion and Future Work

In this thesis, we considered the task of multi-robot adaptive information sampling in a set-

ting where robots are collaborating to obtain a high-quality global model of an ambient phe-

nomenon by updating a Gaussian Process-based estimate. We posit that such systems are

vulnerable to adversaries inserting false information into the model due to the dependence of

the path planning decisions of the robots on the current model. We proposed a secure multi-

robot information sampling algorithm where the robots rely on a blockchain-based technique

to accept or reject incoming observations. We proposed and implemented a variation of the

blockchain technique based on the Proof-of-Work consensus protocol. We performed an ex-

tensive set of experiments assuming threat models with a single or multiple attackers. We

found that by varying the number of digits in the hash prefix, we can trade off between the

energy consumption and the integrity guarantees of the data. As our setting involves an esti-

mation technique that uses a Gaussian process, the estimation is robust to occasional incorrect

observations. Thus, even a hash prefix of a single digit can achieve an acceptable error in

the estimate. Experiments show that the algorithm can significantly improve the quality of

the information model in the presence of a persistent attacker. However, there is a tradeoff

between the number of zeros requested in the hash for the PoW algorithm, and thus implicitly

the quality of the model, and the computational cost. We found that the proposed algorithms,

while effective against the considered attack, add a significant computational overhead to the

robot. These results vary depending on whether the robots operate under CC, PC, and OC

connectivity model, with CC having the best accuracy and the worst time, PC having pre-

27
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dictable gains and losses in accuracy and time depending on the meeting frequency, and OC

having an accuracy that is harder to predict and a time that does not significantly vary when

the communication range changes.

Our results suggest several future directions of research. Depending on the particular

scenario, it might be possible to determine, in real-time, the optimal choice of the difficulty in

the blockchain algorithm for a specific balance of the computational cost and model accuracy.

A better understanding of the relationship between the model and the path chosen by the robots

could also allow for a partial offloading of the blockchain computations to the cloud after the

data sampling had been completed. Other potential future work include the extension of the

proposed algorithm to path planning algorithms that react to changes in the environment, and

extensions of the proposed approach that further improve scalability.
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