93,838 research outputs found

    Adaptive Safety with Control Barrier Functions

    Get PDF
    Adaptive Control Lyapunov Functions (aCLFs) were introduced 20 years ago, and provided a Lyapunov-based methodology for stabilizing systems with parameter uncertainty. The goal of this paper is to revisit this classic formulation in the context of safety-critical control. This will motivate a variant of aCLFs in the context of safety: adaptive Control Barrier Functions (aCBFs). Our proposed approach adaptively achieves safety by keeping the system’s state within a safe set even in the presence of parametric model uncertainty. We unify aCLFs and aCBFs into a single control methodology for systems with uncertain parameters in the context of a Quadratic Program (QP) based framework. We validate the ability of this unified framework to achieve stability and safety in an Adaptive Cruise Control (ACC) simulation

    Adaptive Safety with Control Barrier Functions

    Get PDF
    Adaptive Control Lyapunov Functions (aCLFs) were introduced 20 years ago, and provided a Lyapunov-based methodology for stabilizing systems with parameter uncertainty. The goal of this paper is to revisit this classic formulation in the context of safety-critical control. This will motivate a variant of aCLFs in the context of safety: adaptive Control Barrier Functions (aCBFs). Our proposed approach adaptively achieves safety by keeping the system’s state within a safe set even in the presence of parametric model uncertainty. We unify aCLFs and aCBFs into a single control methodology for systems with uncertain parameters in the context of a Quadratic Program (QP) based framework. We validate the ability of this unified framework to achieve stability and safety in an Adaptive Cruise Control (ACC) simulation

    Control Barrier Function Based Quadratic Programs for Safety Critical Systems

    Get PDF
    Safety critical systems involve the tight coupling between potentially conflicting control objectives and safety constraints. As a means of creating a formal framework for controlling systems of this form, and with a view toward automotive applications, this paper develops a methodology that allows safety conditions -- expressed as control barrier functions -- to be unified with performance objectives -- expressed as control Lyapunov functions -- in the context of real-time optimization-based controllers. Safety conditions are specified in terms of forward invariance of a set, and are verified via two novel generalizations of barrier functions; in each case, the existence of a barrier function satisfying Lyapunov-like conditions implies forward invariance of the set, and the relationship between these two classes of barrier functions is characterized. In addition, each of these formulations yields a notion of control barrier function (CBF), providing inequality constraints in the control input that, when satisfied, again imply forward invariance of the set. Through these constructions, CBFs can naturally be unified with control Lyapunov functions (CLFs) in the context of a quadratic program (QP); this allows for the achievement of control objectives (represented by CLFs) subject to conditions on the admissible states of the system (represented by CBFs). The mediation of safety and performance through a QP is demonstrated on adaptive cruise control and lane keeping, two automotive control problems that present both safety and performance considerations coupled with actuator bounds

    Disturbance Observers for Robust Safety-critical Control with Control Barrier Functions

    Full text link
    This work provides formal safety guarantees for control systems with disturbance. A disturbance observer-based robust safety-critical controller is proposed, that estimates the effect of the disturbance on safety and utilizes this estimate with control barrier functions to attain provably safe dynamic behavior. The observer error bound - which consists of transient and steady-state parts - is quantified, and the system is endowed with robustness against this error via the proposed controller. An adaptive cruise control problem is used as illustrative example through simulations including real disturbance data.Comment: 6 pages, 5 figure

    Safe Control of Euler-Lagrange Systems with Limited Model Information

    Full text link
    This paper presents a new safe control framework for Euler-Lagrange (EL) systems with limited model information, external disturbances, and measurement uncertainties. The EL system is decomposed into two subsystems called the proxy subsystem and the virtual tracking subsystem. An adaptive safe controller based on barrier Lyapunov functions is designed for the virtual tracking subsystem to ensure the boundedness of the safe velocity tracking error, and a safe controller based on control barrier functions is designed for the proxy subsystem to ensure controlled invariance of the safe set defined either in the joint space or task space. Theorems that guarantee the safety of the proposed controllers are provided. In contrast to existing safe control strategies for EL systems, the proposed method requires much less model information and can ensure safety rather than input-to-state safety. Simulation results are provided to illustrate the effectiveness of the proposed method.Comment: Accepted to IEEE CDC 2023 and this is the extended versio

    Fixed-time Adaptive Neural Control for Physical Human-Robot Collaboration with Time-Varying Workspace Constraints

    Full text link
    Physical human-robot collaboration (pHRC) requires both compliance and safety guarantees since robots coordinate with human actions in a shared workspace. This paper presents a novel fixed-time adaptive neural control methodology for handling time-varying workspace constraints that occur in physical human-robot collaboration while also guaranteeing compliance during intended force interactions. The proposed methodology combines the benefits of compliance control, time-varying integral barrier Lyapunov function (TVIBLF) and fixed-time techniques, which not only achieve compliance during physical contact with human operators but also guarantee time-varying workspace constraints and fast tracking error convergence without any restriction on the initial conditions. Furthermore, a neural adaptive control law is designed to compensate for the unknown dynamics and disturbances of the robot manipulator such that the proposed control framework is overall fixed-time converged and capable of online learning without any prior knowledge of robot dynamics and disturbances. The proposed approach is finally validated on a simulated two-link robot manipulator. Simulation results show that the proposed controller is superior in the sense of both tracking error and convergence time compared with the existing barrier Lyapunov functions based controllers, while simultaneously guaranteeing compliance and safety

    Safe Control Synthesis via Input Constrained Control Barrier Functions

    Full text link
    This paper introduces the notion of an Input Constrained Control Barrier Function (ICCBF), as a method to synthesize safety-critical controllers for non-linear control affine systems with input constraints. The method identifies a subset of the safe set of states, and constructs a controller to render the subset forward invariant. The feedback controller is represented as the solution to a quadratic program, which can be solved efficiently for real-time implementation. Furthermore, we show that ICCBFs are a generalization of Higher Order Control Barrier Functions, and thus are applicable to systems of non-uniform relative degree. Simulation results are presented for the adaptive cruise control problem, and a spacecraft rendezvous problem.Comment: 8 pages, 3 figures, submitted to Conference on Decision and Control 202

    Robust Control Barrier Functions with Uncertainty Estimation

    Full text link
    This paper proposes a safety controller for control-affine nonlinear systems with unmodelled dynamics and disturbances to improve closed-loop robustness. Uncertainty estimation-based control barrier functions (CBFs) are utilized to ensure robust safety in the presence of model uncertainties, which may depend on control input and states. We present a new uncertainty/disturbance estimator with theoretical upper bounds on estimation error and estimated outputs, which are used to ensure robust safety by formulating a convex optimization problem using a high-order CBF. The possibly unsafe nominal feedback controller is augmented with the proposed estimator in two frameworks (1) an uncertainty compensator and (2) a robustifying reformulation of CBF constraint with respect to the estimator outputs. The former scheme ensures safety with performance improvement by adaptively rejecting the matched uncertainty. The second method uses uncertainty estimation to robustify higher-order CBFs for safety-critical control. The proposed methods are demonstrated in simulations of an uncertain adaptive cruise control problem and a multirotor obstacle avoidance situation

    Auxiliary-Variable Adaptive Control Barrier Functions for Safety Critical Systems

    Full text link
    This paper studies safety guarantees for systems with time-varying control bounds. It has been shown that optimizing quadratic costs subject to state and control constraints can be reduced to a sequence of Quadratic Programs (QPs) using Control Barrier Functions (CBFs). One of the main challenges in this method is that the CBF-based QP could easily become infeasible under tight control bounds, especially when the control bounds are time-varying. The recently proposed adaptive CBFs have addressed such infeasibility issues, but require extensive and non-trivial hyperparameter tuning for the CBF-based QP and may introduce overshooting control near the boundaries of safe sets. To address these issues, we propose a new type of adaptive CBFs called Auxiliary-Variable Adaptive CBFs (AVCBFs). Specifically, we introduce an auxiliary variable that multiplies each CBF itself, and define dynamics for the auxiliary variable to adapt it in constructing the corresponding CBF constraint. In this way, we can improve the feasibility of the CBF-based QP while avoiding extensive parameter tuning with non-overshooting control since the formulation is identical to classical CBF methods. We demonstrate the advantages of using AVCBFs and compare them with existing techniques on an Adaptive Cruise Control (ACC) problem with time-varying control bounds.Comment: 8 pages, 4 figure
    • …
    corecore