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Abstract— Adaptive Control Lyapunov Functions (aCLFs)
were introduced 20 years ago, and provided a Lyapunov-
based methodology for stabilizing systems with parameter
uncertainty. The goal of this paper is to revisit this classic
formulation in the context of safety-critical control. This will
motivate a variant of aCLFs in the context of safety: adaptive
Control Barrier Functions (aCBFs). Our proposed approach
adaptively achieves safety by keeping the systems state within a
safe set even in the presence of parametric model uncertainty.
We unify aCLFs and aCBFs into a single control methodology
for systems with uncertain parameters in the context of a
Quadratic Program (QP) based framework. We validate the
ability of this unified framework to achieve stability and safety
in an adaptive cruise control (ACC) simulation.

I. INTRODUCTION

In many modern control applications, safety is of critical
importance. It is impossible to model the system dynamics in
these applications exactly—that is, parameters of the model
may not match the real system. For instance, the mass and
electrical properties of robotic systems are often approximate
values. Thus, to truly enforce safety, it is necessary to
quantify safety in the context of unknown parameters.

The use of Control Barrier Functions (CBFs) [1], [2] for
ensuring safety of nonlinear control systems has become
increasingly popular [18], [25], [26]. Controllers synthesized
via CBFs rely on a model, and the guarantees they achieve
may fail in the presence of model uncertainty. Robust control
methods can ensure safety [7], [28] or quantify how safety
properties degrade [9] in the presence of model uncertainty,
but may be overly conservative in restricting the behavior
of the system. Data-driven methods employing machine
learning [19], [5] provide probabilistic safety guarantees,
but may require episodic, offline training to improve model
estimates [6].

In this paper, we focus on an online, adaptive approach to
ensuring that a system remains safe in the presence of model
uncertainty. Adaptive control seeks to update a model of the
system as it evolves to achieve stability or a desired level of
performance [10]. In particular, we build upon the idea of
adaptive Control Lyapunov Functions (aCLFs) [11], which
have been used to stabilize nonlinear systems in the presence
of parametric model uncertainty [12], [13], [15]. That is, the
goal of this paper is to find conditions for adaptive safety
(via Control Barrier Functions) equivalent to those derived
for adaptive stability (via Control Lyapunov Functions).

One challenge in developing adaptive control methods that
guarantee safety is ensuring that the a nonlinear system’s
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state remains within a prescribed safe set at all times. In
contrast, guarantees on stability provided by aCLFs describe
the behavior of the state and parameter estimation error
jointly, allowing the state to grow large before stabilizing,
as long as the parameter estimation error diminishes. To
achieve this stricter guarantee of safety, we leverage stronger
assumptions on the initial parameter estimation error. The
end result are conditions for safety even under the presence
of model uncertainty, i.e., that a system with unknown
parameters can be rendered safe for all time.

The main contribution of this paper is a formal method-
ology for ensuring safety in nonlinear (control affine) sys-
tems with parameter uncertainty through the formulation of
adaptive Control Barrier Functions (aCBFs). Like aCLFs,
aCBFs provide a framework for updating model parameter
estimates online, but do so to ensure safety. Unlike aCLFs,
aCBFs require a different viewpoint on adaptive control to
make stronger statements on the behavior of the system’s
state. To the best of our knowledge, our approach is the first
that adaptively ensures safety utilizing CBFs. The definitions
and results in this paper provide the first steps towards a
framework for adaptive safety unifying both online and data-
driven, episodic updates of model parameters.

This paper is organized as follows. Section II reviews
CLFs and aCLFs and how quadratic program based con-
trollers can be synthesized to adaptively stabilize a system.
Section III discusses CBFs and how they can be used to
ensure the safety of a system. Section IV provides the main
result of the paper by defining aCBFs, and shows how a sys-
tem can be rendered adaptively safe in the presence of model
uncertainty. Section V offers a discussion on the assumptions
and constraints made in the preceding section through a
counter example. Section VI presents simulation results for
an adaptive cruise control (ACC) system using both a safety-
critical controller and a quadratic program based controller
implementing an aCLF and an aCBF simultaneously.

II. ADAPTIVE CONTROL LYAPUNOV FUNCTIONS

To develop provably correct controllers for nonlinear sys-
tems, it is typically assumed that the model is known. Yet
there are many practical applications where this assumption
is not adequate. A simple illustration is a mechanical system
whose parameters (masses, inertias, etc) are not completely
known—and one may not want to treat the unknown model
parameters as a perturbation from nominal parameters since
this would only guarantee stability to a region corresponding
to a bound on this difference (which also may not be known).
The purpose of this section, therefore, is to review the
framework of adaptive Control Lyapunov Functions.
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Consider a state space X ⊂ Rn and a control input space
U ⊂ Rm, where it is assumed X is path-connected and 0 ∈
X . Consider the affine dynamic system given by:

ẋ = f(x) + g(x)u (1)

where x ∈ X , u ∈ U , f : X → Rn and g : X → Rn×m
are smooth on X . We additionally assume f(0) = 0. We
will use the following definition, found in [8], to study the
stability of (1).

Definition 1 (Class K Function). A continuous function α :
[0, a) → R+, with a > 0, is a class K function (α ∈ K)
if α(0) = 0 and α is strictly monotonically increasing. If
a =∞ and limr→∞ α(r) =∞, then α is said to be a class
K∞ function (α ∈ K∞).

Given this definition, we can define a Control Lyapunov
Function (CLF) as in [3], [14].

Definition 2 (Control Lyapunov Function (CLF)). A smooth
function V : X → R+ is a Control Lyapunov Function
(CLF) for (1) if there exists α1, α2, α3 ∈ K∞ such that:

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) (2)

inf
u∈U

V̇ (x,u) ≤ −α3(‖x‖) (3)

for all x ∈ X .

This definition can be constructed with α1, α2, α3 ∈
K, with resulting stability guarantees holding locally. The
existence of a CLF for (1) implies there exists a smooth
(except at x = 0) state-feedback controller k : X → U , that
renders the origin globally asymptotically stable [3], [22],
noting that global refers to the state space X . k can be made
continuous at 0 if V satisfies the small control property [23].

Following the classic formulation of aCLFs in [11], un-
certainty in the dynamics (1) appears as:

ẋ = f(x) + F(x)θ? + g(x)u, (4)

where θ? ∈ Θ ⊂ Rp is a vector of unknown parameters and
F : X → Rn×p is assumed to be smooth on X with F(0) =
0. The impossibility of designing explicit controllers that
are robust to unbounded unknown parameters suggests that
we need to consider a larger class of controllers to stabilize
(4). In particular, controllers that update an estimate of the
unknown parameters. These are called adaptive controllers,
and take the form:

u = k(x, θ̂) (5)
˙̂
θ = Γτ (x, θ̂), (6)

where θ̂ ∈ Θ represents an estimate of the parameters θ?

maintained by the controller, Γ ∈ Rn×n is a matrix adaptive
gain, and τ : X ×Θ→ Rp is the adaptation law. We make
the following assumption on these functions:

(A1) k is locally Lipschitz continuous on (X\{0})×Θ
and k(0, θ̂) = 0,

(A2) τ is locally Lipschitz continuous on X ×Θ,
(A3) Γ ∈ Rp×p is symmetric and positive-definite.

Introducing this parameter update results in a composite
dynamic system:[

ẋ
˙̂
θ

]
=

[
f(x) + F(x)θ? + g(x)k(x, θ̂)

Γτ (x, θ̂)

]
(7)

Solutions to this system evolve in X × Θ. Given this
construction we introduce the following definition from [11]:

Definition 3 (Globally Adaptively Stabilizable). The system
with unknown parameters (4) is globally adaptively stabiliz-
able if there exists a dynamic controller of the form (5)-(6)
satisfying (A1)-(A3) such that solutions (x(t), θ̂(t)) of (7)
are globally bounded and limt→∞ x(t) = 0.

Remark 1. Note that the requirements for global adaptive
stabilizability are rather weak in the sense that θ̂ is not
required to converge to θ?. We will see, in fact, that
convergence of θ̂ to θ? is not necessary for x(t) to converge
to the equilibrium.

The strategy in designing adaptive controllers is to show
that this problem is equivalent to a non-adaptive controller
design problem. Such equivalence is shown via the notion
of adaptive control Lyapunov functions as in [11]:

Definition 4 (Adaptive Control Lyapunov Function (aCLF)).
Let α1(·,θ), α2(·,θ), α3(·,θ) ∈ K∞ for all θ ∈ Θ. A
smooth function Va : X ×Θ→ R+, satisfying:

α1(‖x‖,θ) ≤ Va(x,θ) ≤ α2(‖x‖,θ), (8)

is called an adaptive Control Lyapunov Function (aCLF) for
(4) if there exists a symmetric positive-definite matrix Γ ∈
Rp×p such that for every θ ∈ Θ, Va is a CLF for the system:

ẋ = f(x) + F(x)λclf (x,θ) + g(x)u, (9)

where

λclf (x,θ) , θ + Γ

(
∂Va
∂θ

(x,θ)

)T
. (10)

That is,

inf
u∈U

[
∂Va
∂x

(f(x) + F(x)λclf (x,θ) + g(x)u)

]
≤ −α3(‖x‖,θ). (11)

Adaptive control Lyapunov functions can be used to obtain
the following result establishing the equivalence between
the original adaptive controller design problem and a non-
adaptive one.

Theorem 1. [11] System (4) is globally adaptively stabiliz-
able iff there exists an aCLF for (4).

It is useful to give a sketch of the proof for the sufficiency
portion of this result, as it will inform the proof of the
analogous result in the context of control safety functions.

Sketch. Assume that we have an aCLF Va for (4). As Va
is a CLF for (9) with θ = θ̂, we can construct a smooth
(away from x = 0) controller u = k(x, θ̂) stabilizing (9)
(a specific example of a Lipschitz continuous controller will



be given after the proof), i.e., we can construct a controller
u = k(x, θ̂) such that:

Lf̃clf
Va(x, θ̂) + LgVa(x, θ̂)k(x, θ̂) ≤ −α3(‖x‖, θ̂), (12)

where f̃ is given by:

f̃clf (x, θ̂) = f(x) + F(x)λclf (x, θ̂). (13)

We note that this controller only depends on the current
estimate of the parameters θ̂, and does not depend on the
actual parameters θ?. Define the parameter error:

θ̃ = θ? − θ̂ (14)

to be the difference between the actual and estimated pa-
rameters. Consider now the candidate composite Lyapunov
function:

V (x, θ̂) = Va(x, θ̂) +
1

2
θ̃
T
Γ−1θ̃. (15)

Computing its derivative we obtain:

V̇ = V̇a − θ̃
T
Γ−1

˙̂
θ

≤ −α3(‖x‖, θ̂) + θ̃
T
a(x, θ̂)

−
(
∂Va
∂θ

(x, θ̂)

)
Γa(x, θ̂).

where:

a(x, θ̂) =

((
∂Va
∂x

(x, θ̂)F(x)

)T
− τ (x, θ̂)

)
. (16)

It is now easy to see that using the update law

τ (x, θ̂) =

(
∂Va
∂x

(x, θ̂)F(x)

)T
(17)

implies
V̇ ≤ −α3(‖x‖, θ̂), (18)

from which we conclude that the equilibrium point (0,θ?) of
(7) is globally stable. In particular, we see that (x(t), θ̂(t)) is
globally bounded. It now follows from the LaSalle invariance
principle that x(t) converges to the largest invariant subset
of the collection of points x ∈ X satisfying α3(‖x‖, θ̂) = 0
which is the singleton x = 0.

As noted in the preceding proof, given an aCLF Va,
we can correspondingly synthesize a Lipschitz continuous
controller u = k(x, θ̂). This can be achieved in a point-wise
optimal fashion by considering an optimization based control
framework. In particular, since the aCLF condition (11) is
satisfied, we can consider the following quadratic program:

k(x, θ̂) = argmin
u∈U

1

2
‖u‖2 (aCLF-QP)

s.t.
∂Va
∂x

(x, θ̂)
(
f̃clf (x, θ̂) + g(x)u

)
≤ −α3(‖x‖, θ̂)

This QP based controller will be guaranteed to have a
solution, again because (11) is satisfied, and is Lipschitz
continuous [16]. Moreover, a closed form solution to this
optimization problem, termed the min-norm controller, can

be obtained via the KKT conditions [4]. To see this, define:

φ0(x, θ̂) ,
∂Va
∂x

(x, θ̂)f̃clf (x, θ̂) + α3(‖x‖, θ̂)

φT1 (x, θ̂) ,
∂Va
∂x

(x, θ̂)g(x)

wherein the solution to (aCLF-QP) follows from :

k(x, θ̂) =

{
− φ0(x,θ̂)φ1(x,θ̂)

φT
1 (x,θ̂)φ1(x,θ̂)

if φ0(x, θ̂) > 0

0 if φ0(x, θ̂) ≤ 0

III. CONTROL BARRIER FUNCTIONS

The goal of this work is to provably enforce safety,
even in the context of uncertain models. As a result, we
will leverage the framework of Control Barrier Functions
(CBFs) [1], [2], [28]. This section, therefore, will review the
basic concepts related to these functions and corresponding
controller synthesis.

In the context of safety, we consider a set S defined as
the 0-superlevel set of a continuously differentiable function
h : X → R, yielding:

S , {x ∈ X | h(x) ≥ 0}, (19)
∂S , {x ∈ X | h(x) = 0}, (20)

int(S) , {x ∈ X | h(x) > 0}, (21)

We refer to S as the safe set.
Consider again the known dynamics (1). A feedback

controller u = k(x) induces closed loop dynamics:

ẋ = fcl(x) , f(x) + g(x)k(x) (22)

which is assumed to be locally Lipschitz continuous. This as-
sumption implies that for any initial condition x0 ∈ X there
exists a maximum interval of existence I(x0) = [0, τmax)
such that x(t) is the unique solution to (22) on I(x0); in the
case when fcl is forward complete, τmax =∞. This notation
allows us to define forward invariance and safety:

Definition 5 (Forward Invariant). The set S is forward
invariant if for every x0 ∈ S, x(t) ∈ S for x(0) = x0

and all t ∈ I(x0).

Definition 6 (Safety). The system (22) is safe with respect
to the set S if the set S is forward invariant.

It is desirable to achieve safety without the need to specify
a specific controller as was done in (22). This leads to the
notion of Control Barrier Functions. Before defining these,
we require the following definition as in [2]:

Definition 7 (Extended Class K Function). A continuous
function α : (−b, a) → R, with a, b > 0, is an extended
class K function (α ∈ Ke) if α(0) = 0 and α is strictly
monotonically increasing. If a, b = ∞, limr→∞ α(r) = ∞,
limr→−∞ α(r) = −∞. then α is said to be an extended
class K∞ function (α ∈ K∞,e).

This enables the following definition as in [2]:

Definition 8 (Control Barrier Function (CBF)). Let S ⊂
X be the 0-superlevel set of a continuously differentiable



function h : X → R. h is a Control Barrier Function (CBF)
for S if there exists an extended class K∞ function α such
that for the system (1):

sup
u∈U

[Lfh(x) + Lgh(x)u + α(h(x))] ≥ 0. (23)

for all x ∈ S.

We can consider the pointwise set consisting of all control
values that render S safe:

Kcbf (x) = {u ∈ U : Lfh(x) + Lgh(x)u + α(h(x)) ≥ 0}.
(24)

The main results of [1], [28] is that the existence of a CBF for
S implies the system (1) can be rendered safe with respect
to S:

Theorem 2. Given a set S ⊂ X defined as the 0-superlevel
set of continuously differentiable function h : X → R, if h
is a CBF on S, then any Lipschitz continuous controller k
such that k(x) ∈ Kcbf (x) for all x ∈ S renders the system
(1) safe with respect to the set S.

In addition, if k(x) ∈ Kcbf (x) for all x ∈ X , then the set
S is asymptotically stable in X .

IV. ADAPTIVE CONTROL BARRIER FUNCTIONS

Motivated by the construction of adaptive control Lya-
punov functions (aCLFs), we now explore the notion of an
adaptive Control Barrier Function.

We again assume the control system has the form given in
(4), wherein θ? is a set of unknown parameters, and extend
the previous construction of the safe set S to be parameter
dependent. In this case, we construct a family of safe sets
parameterized by θ and defined as the 0-superlevel sets of a
continuously differentiable function ha : X ×Θ→ R:

Sθ , {x ∈ X | ha(x,θ) ≥ 0}, (25)
∂Sθ , {x ∈ X | ha(x,θ) = 0}, (26)

int(Sθ) , {x ∈ X | ha(x,θ) > 0}, (27)

In particular, we will see this construction allows the states in
the state space that are considered safe to change according
to the current estimate of the parameters. If set in the state
space to be kept safe is independent of the parameters, the
preceding construction is identical to that in (19)-(21).

Given this construction, we can define adaptively safe
in a similar fashion to the definition of global adaptively
stabilizable given in Definition 3 (note that in this case we
opt for a local rather than global definition).

Definition 9 (Adaptively Safe). The system with unknown
parameters (4) can be rendered adaptively safe with respect
to a family of sets Sθ̂ if there exists a dynamic controller
of the form (5)-(6) satisfying (A1)-(A3) such that solutions
(x(t), θ̂(t)) of (7) controlled by (5)-(6) satisfy x(t) ∈ Sθ̂(t)

for all t ∈ I(x(0), θ̂(0)).

This definition implies that the state of the system must
remain within a potentially time-varying set, Sθ̂(t), even

in the presence of uncertainty in the dynamics. It is not
necessary that the parameters converge, or even that they
remain bounded, as in the adaptively stabilizable formulation.
As will be seen, this is inherently connected to the fact
that safety does not force the system to converge to an
equilibrium point, but only requires it remains within a set.

Before defining aCBFs, we also specify that a set of
adaptive gains G is defined such that:

Γ ∈ G =⇒ Γ satisfies A(3). (28)

We note that G need not be all values of Γ satisfying A(3).
We can now define aCBFs as an extension of Definitions 4
and 8.

Definition 10 (Adaptive Control Barrier Function (aCBF)).
Let Sθ ⊂ X be a family of 0-superlevel sets of a contin-
uously differentiable function ha : X × Θ → R, with ∂ha

∂x
Lipchitz continuous. Then ha is an adaptive control barrier
function (aCBF) on the family of sets Sθ over adaptive gains
G for (4) if for any θ ∈ Θ and Γ ∈ G:

sup
u∈U

[
∂ha
∂x

(x,θ) (f(x) + F(x)λcbf (x,θ) + g(x)u)

]
≥ 0.

(29)

with

λcbf (x,θ) , θ − Γ

(
∂ha
∂θ

(x,θ)

)T
. (30)

Let us make a few observations of this definition:
Remark 2. As will be seen in the proof that an aCBF can
ensure a system is adaptively safe, there is a requirement
on the smallest eigenvalue of Γ. As not every value of
Γ satisfying A(3) will satisfy this requirement, we must
consider a restricted set of values for Γ, given by G. This
leads to the incorporation of the set G in the definition of an
aCBF. If the family of sets Sθ does not depend on θ, such
that:

∂ha
∂θ

(x,θ) ≡ 0, (31)

then Γ will not appear in (29). This implies ha being an
aCBF for (4) will not depend on G.
Remark 3. The constraint in (29) differs from (23) in that
the term α(ha(x,θ)) does not appear. Rather, this closely
resembles early definitions of barrier certificates and Lya-
punov barrier functions [21], [27], [24], which did not allow
the state to approach the boundary of the safe sets, enforcing
forward invariance of level sets of ha. As will be shown in
Section V, using the constraint from (23) doesn’t lead to the
state safe set remaining forward invariant.

We note that a QP-based Lipschitz continuous con-
troller attaining safety can be constructed similarly to the
(aCLF-QP) given an aCBF. We now have the necessary
framework in which to present the main result of this paper—
that the existence of an aCBF implies safety of the family
of sets Sθ̂ even under parameter uncertainty.

Theorem 3. Let ha : X → R be an adaptive control barrier
function on the family of sets Sθ̂ over G. Assume that θ̃0 =



θ̃(0) with ‖θ̃0‖2 ≤ c for c > 0 and x0 = x(0) ∈ int(Sθ̂0
)

If there exists a positive definite gain matrix, Γ ∈ G, such
that:

λmin(Γ) ≥ c2

2ha(x0, θ̂0)
, (32)

then there exists a Lipschitz continuous function τ (x, θ̂) such
that for the update law:

˙̂
θ = Γτ (x, θ̂), (33)

the family of sets Sθ̂ is forward invariant.

The main idea is to approach the proof much in the
same way as the proof of Theorem 1. Yet the construction
of a composite CBF as was done in (15) in the case of
aCLFs requires more care. Adding the parameter error term
would result in the composite safety function 0-superlevel set
properly containing the 0-superlevel set of the aCBF, adding
additional states to the set that can be rendered safe. This
extension of the safe set can be quantified if the parameter
estimates (and thus the parameter error) remains bounded,
as in the case of aCLFs, but this is not guaranteed given the
necessary form of τ .
Proof. Define the following composite candidate CBF for
the extended system dynamics (7):

h(x, θ̂) = ha(x, θ̂)− 1

2
θ̃
T
Γ−1θ̃ (34)

By assumption, x0 ∈ int(Sθ̂0
), implying that ha(x0, θ̂0) >

0. Further, our assumption that ‖θ̃0‖2 ≤ c implies that:

1

2
θ̃
>
0 Γ−1θ̃0 ≤

1

2λmin(Γ)
‖θ̃0‖22 ≤

c2

2λmin(Γ)
(35)

Therefore, choosing Γ such that

λmin(Γ) ≥ c2

2ha(x0, θ̂0)
(36)

leads to:
h(x0, θ̂0) ≥ 0 (37)

Now consider the time derivative of h as given in Table I.
The second equality follows the addition and subtraction of
the term:

∂ha
∂x

(x, θ̂)F(x)

(
θ̂ − Γ

(
∂ha
∂θ

(x, θ̂)

)>)
(38)

The third equality is a rearrangement revealing the form of
the aCBF time derivative as given in (29)-(30). In particular,
condition (29) permits the choice of an input u such that the
first inequality is satisfied. Choosing the update law τ as:

τ (x, θ̂) = −
(
∂ha
∂x

(x, θ̂)F(x)

)>
(39)

results in the last inequality. This inequality, in conjunction
with (37) and the comparison lemma in [8] imply that

h(x(t), θ̂(t)) ≥ 0 (40)

for all t ≥ 0. Given the construction of h in (34), it follows
that:

ha(x(t), θ̂(t)) ≥ 1

2
θ̃(t)>Γ−1θ̃(t) ≥ 0. (41)

Lastly, we conclude that x(t) ∈ Sθ̂(t) for t ≥ 0.

The proof reveals that superlevel sets of h are forward
invariant. As h can not be computed without knowing the
true parameters θ?, it is not possible to set ḣ ≥ −α(h) as
is typical with CBFs. Furthermore, we have that ha ≥ h,
implying that −α(ha) ≤ −α(h). Thus setting ḣ ≥ −α(ha)
does not yield the desired lower bound on ḣ. One may note
that setting ḣ ≥ −α(ha) leads to ḣ ≥ 0 when ha = 0,
or when the state is on the boundary of the safe set. This
fact is concurrent with the common forward invariance proof
technique utilizing Nagumo’s theorem [17]. Despite this, it
is in fact possible to construct simple examples (in R2) such
that the state must leave the safe set defined by ha for any
choice of differentiable α and Γ as shown in Section V.

Remark 4. The assumption on θ̃ implies that the initial pa-
rameter error must be bounded, unlike the aCLF formulation.
This is due to the fact that we seek to keep a particular
set forward invariant. In contrast, the only set kept provably
forward invariant in the aCLF formulation is the sublevel
set of the composite Lyapunov function V corresponding
to the initial conditions (x(0), θ̂(0)). Evaluating that set
would too require assumptions on the boundedness of θ̃(0).
Additionally, while this may seem restrictive, we note that
the input for the system will not be chosen to be robust
to all uncertainties in this initial uncertainty set. Rather, the
uncertainty will be handled by adapting parameter estimates.

Remark 5. The lower bound on the adaptive gain allows us
to ensure that the system can adapt quickly enough to ensure
safety from the given initial condition. Initial distance from
the safety set boundary and smaller possible initial parameter
error allow the adaptive gain to be made smaller.

A quadratic program based controller similar to
(aCLF-QP) can be constructed using an aCBF. To this
end, we adopt the safety-critical control formulation in [25],
[7] that filters a desired but potentially unsafe controller
kd : X ×Θ→ U to find the nearest safe control action:

k(x, θ̂) = argmin
u∈U

1

2
‖u− kd(x, θ̂)‖2 (aCBF-QP)

s.t.
∂ha
∂x

(x, θ̂)(f̃cbf (x, θ̂) + g(x)u) ≥ 0

where f̃cbf is defined like f̃clf in (13). As with (aCLF-QP),
this quadratic program has a closed form solution.

V. ANALYSIS OF ACBF FORMULATION

In this section we analyze the aCBF conditions to verify
that, in fact, they do not appear overly conservative. In partic-
ular, changing the aCBF condition ḣa ≥ 0 to ḣa ≥ −α(ha)
does not necessarily lead to adaptive safety. Consider the
simple dynamic system given by:

ẋ = θ + u (42)



ḣ(x, θ̂,u) =
∂ha

∂x
(x, θ̂) (f(x) + F(x)θ? + g(x)u) +

∂ha

∂θ
(x, θ̂)

˙̂
θ + θ̃

>
Γ−1 ˙̂θ

=
∂ha

∂x
(x, θ̂) (f(x) + F(x)θ? + g(x)u) +

∂ha

∂θ
(x, θ̂)Γτ (x, θ̂) +

∂ha

∂x
(x, θ̂)F(x)

(
θ̂ − Γ

(
∂ha

∂θ
(x, θ̂)

)>)

−∂ha

∂x
(x, θ̂)F(x)

(
θ̂ − Γ

(
∂ha

∂θ
(x, θ̂)

)>)
+ θ̃

T
τ (x, θ̂)

=
∂ha

∂x
(x, θ̂)

(
f(x) + F(x)

(
θ̂ − Γ

(
∂ha

∂θ
(x, θ̂)

)>)
+ g(x)u

)

+
∂ha

∂x
(x, θ̂)F(x)

(
θ̃ + Γ

(
∂ha

∂θ
(x, θ̂)

)>)
+

∂ha

∂θ
(x, θ̂)Γτ (x, θ̂) + θ̃

>
τ (x, θ̂)

≥
(
∂ha

∂θ
(x, θ̂)Γ + θ̃

>
)((

∂ha

∂x
(x, θ̂)F(x)

)>
+ τ (x, θ̂)

)
≥ 0

TABLE I. Calculation of ḣ as used in the proof of the main result.

with θ unknown and the safety function ha(x) = 1 − x2

defining the state safe set S = {x ∈ R | x2 ≤ 1}. Assume
that x0 ∈ int(S) and θ̃20 ≤ c2. The resulting composite safety
function is given by:

h(x, θ̂) = ha(x)− 1

2
γ−1θ̃2 (43)

with any γ satisfying:

γ ≥ c2

2ha(x0)
. (44)

We additionally define the following sets:

U = {(x, θ̃) ∈ R2 | x ∈ S} (45)

H0 = {(x, θ̃) ∈ R2 | h(x, θ̂) ≥ 0} (46)

We note that the set U extends infinitely along the θ̃-axis,
and completely contains H0. Furthermore, H0 ∩ ∂U =
{(−1, 0), (1, 0)}. The time derivative of the composite safety
function is given by:

ḣ(x, θ̂, u) = −2x(θ̂ + u) + θ̃(−2x+ τ(x)) (47)

for ˙̂
θ = γτ(x). Choosing the update law τ(x) = 2x

and controller u = −θ̂ + 1
2xα(ha(x)), with extended K∞

function α, we have:

ḣ(x, θ̂) = −x2α(ha(x)) ≥ −α(ha(x)). (48)

as when α(ha(x)) ≥ 0, x2 ≤ 1, and when α(ha(x)) ≤
0, x2 ≥ 1. Noting the construction of U , we have the
implication that (x, θ̃) ∈ U =⇒ ḣ(x, θ̂) ≤ 0. The closed-
loop state and parameter error dynamics are given by:[

ẋ
˙̃
θ

]
=

[
θ̃ + 1

2xα(ha(x))
−2γx

]
=

[
θ̃ − F (x)
−g(x)

]
, (49)

which has an unstable equilibrium point at the origin. This
system is an example of a Liénard system (like the Van der
Pol oscillator) as in [20], with F (x) = − 1

2xα(ha(x)) and

g(x) = 2γx. For systems of the this form, the following
theorem, attributed to Liénard, provides the existence of a
unique, stable limit cycle:

Theorem 4 (Liénard’s Theorem, [20]). Under the assump-
tion that F, g ∈ C1(R), F and g are odd functions of x,
xg(x) > 0 for x 6= 0, F (0) = 0, F ′(0) < 0, F has single
positive zero at x = a, and F increases monotonically to
infinity for x ≥ a as x → ∞, it follows that the Liénard
system (49) has exactly one limit cycle and it is stable.

If α is continuously differentiable in addition to an ex-
tended K∞ function, the assumptions of this theorem are met
by the functions given in (49). We note that a = 1 in this
given example. Thus we can conclude that the system (49)
has a stable periodic orbit, which we denote Φ. We denote
the open set in R2 enclosed by the limit cycle as int(Φ).
Additionally, the proof of this theorem as in [20] implies the
following corollary regarding the stable limit cycle:

Corollary 1. The stable limit cycle Φ is symmetric about the
origin and passes through a point, denoted as P2 = (x2, θ̃2),
such that x2 > a.

Given that a = 1, this corollary reveals that the stable
limit cycle leaves the set U , for which the state is considered
safe. Additionally, as the limit cycle is symmetric about the
origin, and the origin is an unstable equilibrium, the origin
is contained in int(Φ).

This corollary also implies that H0 ⊂ (Φ∪ int(Φ)). To see
this, note that as the limit cycle encircles the origin, it must
reenter the set U after leaving the point P2. At any point
v = (v1, v2) ∈ U that the limit cycle enters, we must have
h(v) ≤ 0, given the two points in H0 ∩ ∂U . Once the limit
cycle enters U , we have ḣ ≤ 0 until the limit cycle leaves
U as previously noted. Thus, h ≤ 0 along the portion of the
limit cycle contained in U , implying H0 ⊂ (Φ∪ int(Φ)). To
complete the proof, we will employ the following definition
and lemma from [8]:



Definition 11 (Positive Limit Set). The positive limit set L+

is defined as all points p ∈ R2 such that there is a sequence
{tn} with tn → ∞ as n → ∞, and (x(tn), θ̃(tn)) → p as
n→∞.

Lemma 1. If a solution (x(t), θ̃(t)) of (49) is bounded for
t ≥ 0, then its positive limit set L+ is a nonempty, compact,
invariant set, and (x(t), θ̃(t)) approaches L+ as t→∞.

We note that the unstable equilibrium point is not con-
tained within the positive limit set L+. As the 0-superlevel
set of h, and thus all possible initial conditions given our
bound on θ̃0, are contained inside the limit cycle, all solutions
to (49) are bounded (by the limit cycle). Furthermore, L+ =
Φ, and thus all solutions starting in the 0-superlevel approach
set approach Φ. As the point P2 ∈ Φ, and P2 /∈ U , we see
that any solution starting in the 0-superlevel set of h leaves
the desired state safe set S. Hence, the relaxation does not
achieve safety of the state as desired, as seen in Figure 1.
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Fig. 1. Evolution of the system governed by (49) with α(r) = kr, k = 10,
(x0, θ̃0) = (0.2, 1), c = 5, and γ = 26 achieving the lower bound.

VI. ADAPTIVE CRUISE CONTROL

To demonstrate how an aCBF can be used to render a
system adaptively safe, we consider the problem of adaptive
cruise control (ACC) as posed in [1]. The dynamics of the
system are given by:

d

dt

[
v
D

]
=

[
0

v0 − v

]
− 1

m

[
1 v v2

0 0 0

]f0f1
f2

+

[
1
m
0

]
u (50)

with v the velocity of the vehicle, D the distance between the
vehicle and a leading vehicle traveling at a fixed velocity v0,
m the vehicle’s mass, and f0, f1, and f2 unknown parameters
associated with rolling frictional force. In this problem, we
seek to drive the velocity to a desired velocity, vd, while
simultaneously ensuring the distance between the vehicles
satisfies a safety constraint given by:

D ≥ 1.8v. (51)

The parameters f0, f1, and f2 are often determined empiri-
cally, and if they are not accurate, the desired velocity may
not be accurately tracked. Furthermore, if the parameters do

not exactly match the true parameters, it may not be possible
to certify that the system will satisfy the safety constraint.

The control objective of tracking a desired velocity can
be achieved with a hand-designed controller kd or encoded
using a CLF, and the safety constraint can be encoded using
a CBF. Additional constraints on the maximum acceleration
and deceleration can be enforced to maintain passenger
comfort. To handle uncertainty in the parameters, we utilize
the tool of aCBFs to maintain and update estimates of these
parameters. An aCBF that yields desirable results is defined
as the following continuously differentiable function:

ha(v,D) =

{
α2 if D − 1.8v ≥ α
α2 − (D − 1.8v − α)2 if D − 1.8v < α

for α > 0. This particular construction of ha is constant away
from the safety boundary and diminishes to 0 (quadratically
to preserve differentiability) as the boundary is approached.
In practice, this is to handle the fact that superlevel sets of the
composite safety function h are forward invariant. In regions
where ha is constant, ∂ha

∂x , and thus the update law in (39),
is 0, thus making ḣ = 0 as in the first equality in Table I.

aCBF-QP Controller: A simple proportional controller on
tracking error v − vd can be implemented and achieve good
tracking performance, but is not necessarily safe. A CBF
alone would not ensure the safety of this controller with
model uncertainty, but treating the proportional controller as
kd in aCBF-QP with an aCBF, safety can be achieved.

aCLF-aCBF-QP Controller: Additionally, we can unify
aCLF and aCBFs in a quadratic program based controller to
receive the benefits of optimal and adaptive tracking while
remaining safe. Separate estimates of the parameters are
mainted for the aCLF and the aCBF, as the form of the update
laws in (17) and (39) may not be simultaneously satisfiable
for only one estimate of the parameters. The CLF in [1] on
the velocity tracking error v− vd, given by Va = (v− vd)2,
also satisfies the aCLF condition (11). Letting x = (v, z) and
θ̂ and ψ̂ be parameter estimates associated with the aCLF
and aCBF, respectively, we formulate a QP-based controller:

k(x, θ̂, ψ̂) = argmin
u∈U

J(u) + cV (x)δV + cp(x)δp

s.t. Lf̃clf
Va(x, θ̂) + LgVa(x, θ̂)u ≤ −α3(‖x‖, θ̂) + δV

Lf̃cbf
ha(x, ψ̂) + Lgha(x, ψ̂)u ≥ 0

u ≤ umax + δp

u ≥ −umax − δp
δV , δp ≥ 0

with parameter updates for θ̂ and ψ̂ as in (17) and (39),
respectively. δV and δp are relaxations to the optimization
problem to ensure its feasibility, while safety is ensured.
The functions cV and cp are Lipschitz continuous and are
used to achieve smoothness. With initial parameter estimates[
f̂0 f̂1 f̂2

]
= 10

[
f?0 f?1 f?2

]
(less friction than mod-

eled), the results of this controller appear in Figure 2.
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Fig. 2. Comparison of different adaptive and non-adaptive control methodologies. The aCBF-QP is able to enforce safety of the proportional controller
(left). An aCLF controller is able to track the desired velocity with zero steady state error (center). Both aCBF controllers are able to keep the vehicle
within the safe region for all time (right)

We see that the proportional controller fails to keep the
vehicle safe, but filtering it with the aCBF-QP keeps it safe
(with D ≥ 1.8v for all time) even with model uncertainty.
A CLF-CBF controller with no adaptive elements fails to
either track the desired velocity (with steady state error)
or keep the vehicle safe. The CLF-aCBF controller keeps
the vehicle safe but has steady state tracking error, while an
aCLF-aCBF controller accurately tracks the desired velocity
with no steady state error, and keeps the vehicle safe.

VII. CONCLUSION

We presented a novel approach for ensuring the safety of a
system under a form of parametric uncertainty. This approach
builds off the structure established with adaptive Control
Lyapunov Functions, and highlights the differences that must
be considered when ensuring the forward invariance of a
specific set. Future work includes considering this framework
within a batched-data framework, in which initial parametric
uncertainty can be iteratively and episodically reduced to
permit less conservative safe sets.
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