1,551 research outputs found

    WordFences: Text localization and recognition

    Get PDF
    En col·laboració amb la Universitat de Barcelona (UB) i la Universitat Rovira i Virgili (URV)In recent years, text recognition has achieved remarkable success in recognizing scanned document text. However, word recognition in natural images is still an open problem, which generally requires time consuming post-processing steps. We present a novel architecture for individual word detection in scene images based on semantic segmentation. Our contributions are twofold: the concept of WordFence, which detects border areas surrounding each individual word and a unique pixelwise weighted softmax loss function which penalizes background and emphasizes small text regions. WordFence ensures that each word is detected individually, and the new loss function provides a strong training signal to both text and word border localization. The proposed technique avoids intensive post-processing by combining semantic word segmentation with a voting scheme for merging segmentations of multiple scales, producing an end-to-end word detection system. We achieve superior localization recall on common benchmark datasets - 92% recall on ICDAR11 and ICDAR13 and 63% recall on SVT. Furthermore, end-to-end word recognition achieves state-of-the-art 86% F-Score on ICDAR13

    Deep Learning for Video Object Segmentation:A Review

    Get PDF
    As one of the fundamental problems in the field of video understanding, video object segmentation aims at segmenting objects of interest throughout the given video sequence. Recently, with the advancements of deep learning techniques, deep neural networks have shown outstanding performance improvements in many computer vision applications, with video object segmentation being one of the most advocated and intensively investigated. In this paper, we present a systematic review of the deep learning-based video segmentation literature, highlighting the pros and cons of each category of approaches. Concretely, we start by introducing the definition, background concepts and basic ideas of algorithms in this field. Subsequently, we summarise the datasets for training and testing a video object segmentation algorithm, as well as common challenges and evaluation metrics. Next, previous works are grouped and reviewed based on how they extract and use spatial and temporal features, where their architectures, contributions and the differences among each other are elaborated. At last, the quantitative and qualitative results of several representative methods on a dataset with many remaining challenges are provided and analysed, followed by further discussions on future research directions. This article is expected to serve as a tutorial and source of reference for learners intended to quickly grasp the current progress in this research area and practitioners interested in applying the video object segmentation methods to their problems. A public website is built to collect and track the related works in this field: https://github.com/gaomingqi/VOS-Review

    Hierarchical object detection with deep reinforcement learning

    Get PDF
    We present a method for performing hierarchical object detection in images guided by a deep reinforcement learning agent. The key idea is to focus on those parts of the image that contain richer information and zoom on them. We train an intelligent agent that, given an image window, is capable of deciding where to focus the attention among five different predefined region candidates (smaller windows). This procedure is iterated providing a hierarchical image analysis. We compare two different candidate proposal strategies to guide the object search: with and without overlap. Moreover, our work compares two different strategies to extract features from a convolutional neural network for each region proposal: a first one that computes new feature maps for each region proposal, and a second one that computes the feature maps for the whole image to later generate crops for each region proposal. Experiments indicate better results for the overlapping candidate proposal strategy and a loss of performance for the cropped image features due to the loss of spatial resolution. We argue that, while this loss seems unavoidable when working with large amounts of object candidates, the much more reduced amount of region proposals generated by our reinforcement learning agent allows considering to extract features for each location without sharing convolutional computation among regions.Postprint (published version
    • …
    corecore