3,754 research outputs found

    TOFEC: Achieving Optimal Throughput-Delay Trade-off of Cloud Storage Using Erasure Codes

    Full text link
    Our paper presents solutions using erasure coding, parallel connections to storage cloud and limited chunking (i.e., dividing the object into a few smaller segments) together to significantly improve the delay performance of uploading and downloading data in and out of cloud storage. TOFEC is a strategy that helps front-end proxy adapt to level of workload by treating scalable cloud storage (e.g. Amazon S3) as a shared resource requiring admission control. Under light workloads, TOFEC creates more smaller chunks and uses more parallel connections per file, minimizing service delay. Under heavy workloads, TOFEC automatically reduces the level of chunking (fewer chunks with increased size) and uses fewer parallel connections to reduce overhead, resulting in higher throughput and preventing queueing delay. Our trace-driven simulation results show that TOFEC's adaptation mechanism converges to an appropriate code that provides the optimal delay-throughput trade-off without reducing system capacity. Compared to a non-adaptive strategy optimized for throughput, TOFEC delivers 2.5x lower latency under light workloads; compared to a non-adaptive strategy optimized for latency, TOFEC can scale to support over 3x as many requests

    On the merits of SVC-based HTTP adaptive streaming

    Get PDF
    HTTP Adaptive Streaming (HAS) is quickly becoming the dominant type of video streaming in Over-The-Top multimedia services. HAS content is temporally segmented and each segment is offered in different video qualities to the client. It enables a video client to dynamically adapt the consumed video quality to match with the capabilities of the network and/or the client's device. As such, the use of HAS allows a service provider to offer video streaming over heterogeneous networks and to heterogeneous devices. Traditionally, the H. 264/AVC video codec is used for encoding the HAS content: for each offered video quality, a separate AVC video file is encoded. Obviously, this leads to a considerable storage redundancy at the video server as each video is available in a multitude of qualities. The recent Scalable Video Codec (SVC) extension of H. 264/AVC allows encoding a video into different quality layers: by dowloading one or more additional layers, the video quality can be improved. While this leads to an immediate reduction of required storage at the video server, the impact of using SVC-based HAS on the network and perceived quality by the user are less obvious. In this article, we characterize the performance of AVC- and SVC-based HAS in terms of perceived video quality, network load and client characteristics, with the goal of identifying advantages and disadvantages of both options

    Anticipatory Buffer Control and Quality Selection for Wireless Video Streaming

    Full text link
    Video streaming is in high demand by mobile users, as recent studies indicate. In cellular networks, however, the unreliable wireless channel leads to two major problems. Poor channel states degrade video quality and interrupt the playback when a user cannot sufficiently fill its local playout buffer: buffer underruns occur. In contrast to that, good channel conditions cause common greedy buffering schemes to pile up very long buffers. Such over-buffering wastes expensive wireless channel capacity. To keep buffering in balance, we employ a novel approach. Assuming that we can predict data rates, we plan the quality and download time of the video segments ahead. This anticipatory scheduling avoids buffer underruns by downloading a large number of segments before a channel outage occurs, without wasting wireless capacity by excessive buffering. We formalize this approach as an optimization problem and derive practical heuristics for segmented video streaming protocols (e.g., HLS or MPEG DASH). Simulation results and testbed measurements show that our solution essentially eliminates playback interruptions without significantly decreasing video quality

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    Preliminary specification and design documentation for software components to achieve catallaxy in computational systems

    Get PDF
    This Report is about the preliminary specifications and design documentation for software components to achieve Catallaxy in computational systems. -- Die Arbeit beschreibt die Spezifikation und das Design von Softwarekomponenten, um das Konzept der Katallaxie in Grid Systemen umzusetzen. Eine Einführung ordnet das Konzept der Katallaxie in bestehende Grid Taxonomien ein und stellt grundlegende Komponenten vor. Anschließend werden diese Komponenten auf ihre Anwendbarkeit in bestehenden Application Layer Netzwerken untersucht.Grid Computing

    A web middleware architecture for dynamic customization of content for wireless clients

    Get PDF

    Wireless Bandwidth Aggregation for Internet Traffic

    Get PDF
    This MQP proposes a new method for bandwidth aggregation, utilize-able by the typical home network owner. The methods explained herein aggregate a network of coordinating routers within local WiFi communication range to achieve increased bandwidth at the application layer, over the HTTP protocol. Our protocol guarantees content delivery and reliability, as well as non-repudiation measures that hold each participant, rather then the group of routers, accountable for the content they download
    corecore