5,849 research outputs found

    Evolutionary Robot Vision for People Tracking Based on Local Clustering

    Get PDF
    This paper discusses the role of evolutionary computation in visual perception for partner robots. The search of evolutionary computation has many analogies with human visual search. First of all, we discuss the analogies between the evolutionary search and human visual search. Next, we propose the concept of evolutionary robot vision, and a human tracking method based on the evolutionary robot vision. Finally, we show experimental results of the human tracking to discuss the effectiveness of our proposed method

    Particle swarm optimization with composite particles in dynamic environments

    Get PDF
    This article is placed here with the permission of IEEE - Copyright @ 2010 IEEEIn recent years, there has been a growing interest in the study of particle swarm optimization (PSO) in dynamic environments. This paper presents a new PSO model, called PSO with composite particles (PSO-CP), to address dynamic optimization problems. PSO-CP partitions the swarm into a set of composite particles based on their similarity using a "worst first" principle. Inspired by the composite particle phenomenon in physics, the elementary members in each composite particle interact via a velocity-anisotropic reflection scheme to integrate valuable information for effectively and rapidly finding the promising optima in the search space. Each composite particle maintains the diversity by a scattering operator. In addition, an integral movement strategy is introduced to promote the swarm diversity. Experiments on a typical dynamic test benchmark problem provide a guideline for setting the involved parameters and show that PSO-CP is efficient in comparison with several state-of-the-art PSO algorithms for dynamic optimization problems.This work was supported in part by the Key Program of the National Natural Science Foundation (NNSF) of China under Grant 70931001 and 70771021, the Science Fund for Creative Research Group of the NNSF of China under Grant 60821063 and 70721001, the Ph.D. Programs Foundation of the Ministry of education of China under Grant 200801450008, and by the Engineering and Physical Sciences Research Council of U.K. under Grant EP/E060722/1

    Human Head Tracking Based on Particle Swarm Optimization and Genetic Algorithm

    Get PDF
    This paper compares particle swarm optimization and a genetic algorithm for perception by a partner robot. The robot requires visual perception to interact with human beings. It should basically extract moving objects using visual perception in interaction with human beings. To reduce computational cost and time consumption, we used differential extraction. We propose human head tracking for a partner robot using particle swarm optimization and a genetic algorithm. Experiments involving two maximum iteration numbers show that particle swarm optimization is more effective in solving this problem than genetic algorithm
    corecore