3 research outputs found

    Adaptive Control of a Class of Switched Nonlinear System with Partial State Constraints Using a Barrier Lyapunov Function

    Get PDF
    This paper discusses partial state constraint adaptive tracking control problem of switched nonlinear systems with uncertain parameters. In order to ensure boundedness of the outputs and prevent the states from violating the constraints, a barrier Lyapunov function (BLF) is employed. Based on backstepping method, an adaptive controller for the switched system is designed. Furthermore, the state-constrained asymptotic tracking under arbitrary switching is performed. The closed-loop signals keep bounded when the initial states and control parameters are given. Finally, examples and simulation results are reported to illustrate the effectiveness of the proposed controller

    Providing Definitive Learning Direction for Relation Classification System

    Get PDF
    Deep neural network has adequately revealed its superiority of solving various tasks in Natural Language Processing, especially for relation classification. However, unlike traditional feature-engineering methods that targetedly extract well-designed features for specific task, the diversity of input format for deep learning is limited; word sequence as input is the frequently used setting. Therefore, the input of neural network, to some extent, lacks pertinence. For relation classification task, it is not uncommon that, without specific entity pair, a sentence contains various relation types; therefore, entity pair indicates the distribution of the crucial information in input sentence for recognizing specific relation. Aiming at this characteristic, in this paper, several strategies are proposed to integrate entity pair information into the application of deep learning in relation classification task, in a way to provide definitive learning direction for neural network. Experimental results on the SemEval-2010 Task 8 dataset show that our method outperforms most of the state-of-the-art models, without external linguistic features

    Adaptive Neural Control of MIMO Nonstrict-Feedback Nonlinear Systems with Time Delay

    No full text
    In this paper, an adaptive neural output-feedback tracking controller is designed for a class of multiple-input and multiple-output nonstrict-feedback nonlinear systems with time delay. The system coefficient and uncertain functions of our considered systems are both unknown. By employing neural networks to approximate the unknown function entries, and constructing a new input-driven filter, a backstepping design method of tracking controller is developed for the systems under consideration. The proposed controller can guarantee that all the signals in the closed-loop systems are ultimately bounded, and the time-varying target signal can be tracked within a small error as well. The main contributions of this paper lie in that the systems under consideration are more general, and an effective design procedure of output-feedback controller is developed for the considered systems, which is more applicable in practice. Simulation results demonstrate the efficiency of the proposed algorithm
    corecore