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This paper discusses partial state constraint adaptive tracking control problem of switched nonlinear systems with uncertain
parameters. In order to ensure boundedness of the outputs and prevent the states from violating the constraints, a barrier
Lyapunov function (BLF) is employed. Based on backstepping method, an adaptive controller for the switched system is designed.
Furthermore, the state-constrained asymptotic tracking under arbitrary switching is performed. The closed-loop signals keep
bounded when the initial states and control parameters are given. Finally, examples and simulation results are reported to illustrate
the effectiveness of the proposed controller.

1. Introduction

There is a strong industrial background of switched system in
various fields. And for exactly that reason, many researchers
have discussed the theoretical and applied research of
switched system, and some of themhave achieved commend-
able results in the last decade [1–3]. Since nonlinearity is the
nature of the universe, more and more attention of switched
nonlinear system has been drawn by control field [4–6]. It
is also worth mentioning that a class of switched nonlinear
system in lower triangular form is considered in [7], of which
the backstepping method is used and a common virtual con-
trol is constructed to achieve the aim. Nevertheless, relatively
accurate parameters are required by most control strategy
for switched nonlinear system. Apparently, these desirable
demands could not be met in practical terms.

Constraints are important issues in the study of physical
systems, the authors in [8, 9] emphasized this problem in
nonlinear saturation and performance and safety specifica-
tions, respectively. Taking a practical example for illustrative
purposes, the attitude-control mass expulsion system of
electrostatic microactuators is confronted with constraints,
owing to the necessity of both the position and the speed
of the movable electrode to be controlled. However, the
development of constrained control is restrained by meeting

the practical requirement. In this scenario, the extensive
attention of the design and the analysis of constrained control
has been increased. Recently, barrier Lyapunov functions
(BLFs) have been proposed to solve the control problem of
nonlinear systems. The state of the system will be not con-
tradictory to the constraints [10–13] utilizing BLFs. Although
the BLF is proven to settle constrained control problems [14],
the parameters of switched nonlinear systems are expected to
be deterministic.

Moreover, parameter uncertainties are widespread in
realistic systems; hereon it has already been reported that
adaptive control is an effective method to deal with such
uncertain. On the one hand, remarkable achievements have
been obtained from the research on adaptive control of
nonlinear system. In [15–17], for instance, the controlmethod
is proposed and the preferable control performances are
provided aiming at nonlinear time-delay systems. On the
other hand, many researchers study the adaptive control
problem of switched systems with uncertain parameters [18–
20] with the development of adaptive control, and prelimi-
nary results have been obtained [21, 22]. In [23], an adap-
tive tracking controller is designed for switched stochastic
nonlinear systems with unknown actuator dead-zone; the
satisfying control performance is obtained as well. Among
the aforementioned works, few authors have addressed the
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important issue that considering the uncertainty and the
constraint together. Hence, the approach to design constraint
adaptive controllers for switched nonlinear systems has been
not reported to the best of our knowledge.

In the present paper, the adaptive tracking control prob-
lem of a class of switched nonlinear system with partial state
constraints is solved. The progressive state tracking would
not violate constraint conditions and all signals would be
bounded when the parameter increases to infinitely great
and approaches a certain value based on BLF. The control
effectiveness of BLFs is verified by the comparative simulation
results with quadratic Lyapunov functions (QLFs).

The remainder of this paper is organized as follows.
Section 2 formulates the control problem. The partial state
constraint problems of barrier Lyapunov functions are elu-
cidated. Section 3 develops the adaptive controllers with
state constraints; the stability analysis and the proof process
are presented as well. Section 4 corroborates the expected
effectiveness of the proposed controller by means of selected
simulation results. Finally, Section 5 concludes this paper.

2. Problem Statements and Preliminaries

2.1. Problem Formulation. Consider a class of the switched
nonlinear systemswith uncertain parameters in the following
form:

𝑥̇𝑖 = 𝐹𝜎(𝑡)𝑖 (𝑥𝑖) + 𝜃𝜎(𝑡)𝑏 𝑔𝑖 (𝑥𝑖) 𝑥𝑖+1
𝑥̇𝑛 = 𝐹𝜎(𝑡)𝑛 (𝑥𝑛) + 𝜃𝜎(𝑡)𝑏 𝑔𝑛 (𝑥𝑛) 𝑢
𝑦 = 𝑥1,

(1)

where 𝜃𝑖𝑏 ∈ 𝑅𝑛 are the unknown piecewise constant para-
meters. 𝜎(𝑡) ∈ 𝑃 = {1, 2, . . . , 𝑝𝑠} is a non-Zeno switching
signal which is right continuous. 𝑢 ∈ 𝑅 is the control input.𝐹𝑖𝑘 and 𝑔𝑘 are smooth vector fields with𝐹𝑖𝑘(0) = 0 and 𝑔𝑘(𝑥) ̸=0, ∀𝑥 ∈ 𝑅𝑛.

In addition, 𝐹𝑗𝑖 (𝑥𝑖), ∀𝑗 ∈ 𝑃 is unknown switched
nonlinear function which can be linearly parameterized as

𝐹𝜎(𝑡)𝑖 (𝑥𝑖) =
𝑝∑
𝑘=1

𝑓𝑘𝑖 (𝑥𝑖) 𝜃𝑓𝜎(𝑡)𝑘𝑖 , (2)

where 𝑓𝑘𝑖(𝑥𝑖) is smooth function and 𝜃𝑖𝑓 ∈ 𝑅𝑛 is a vector of
uncertain parameters satisfying 𝜃 ∈ Ω𝜃 with known compact
setΩ𝜃. The parameters 𝜃𝑖𝑏 and 𝜃𝑖𝑓, ∀𝑖 ∈ 𝑃, the switching time
instants 𝑇𝑘, 𝑘 = 1, 2, . . ., and the switching index 𝜎(𝑡) ∈ 𝑃 ={1, 2, . . . , 𝑝𝑠} are all unknown. There exist positive constants𝑃𝑖 such that ‖𝑓𝑘𝑖(𝑥𝑖)‖ ≤ 𝑃𝑖 for all |𝑥𝑖| ≤ 𝑏, 𝑖 = 1, 2, . . . , 𝑛 due
to smoothness property.

According to (1) and (2), system (1) can be transformed in
to the following form:

𝑥̇𝑖 = 𝐹𝜎(𝑡)𝑖 (𝑥𝑖) + 𝜃𝜎(𝑡)𝑏 𝑔𝑖 (𝑥𝑖) 𝑥𝑖+1
= 𝑝∑
𝑘=1

𝑓𝑘𝑖 (𝑥𝑖) 𝜃𝑓𝜎(𝑡)𝑘𝑖 + 𝜃𝜎(𝑡)𝑏 𝑔𝑖 (𝑥𝑖) 𝑥𝑖+1,
𝑖 = {1, 2, . . . , 𝑛} .

(3)

The control target is to design an adaptive controller for sys-
tem (1) such that 𝑦 tracks a desired trajectory 𝑦𝑑 asymptoti-
cally; that is, lim𝑡→∞(𝑦−𝑦𝑑) = lim𝑡→∞𝑧1 = 0 and |𝑥𝑖| ≤ 𝑏, 𝑏 is
a positive constant. Moreover, in order to make the problem
here more tractable, we give the following assumption, which
is common but practical.

Assumption 1 (see [24]). 𝜃𝑖𝑏 for all 𝑖’s have the same sign and
whose common lower bound is known, that is, 0 < 𝜃𝑏 < |𝜃𝑖𝑏|.
2.2. Preliminaries

Definition 2 (see [12]). A barrier Lyapunov function (BLF)
is a scalar function 𝑉(𝑥), defined with respect to the system𝑥̇ = 𝑓(𝑥) on an open region 𝐷 containing the origin,
that is, continuous, positive definite, has continuous first-
order partial derivatives at every point of𝐷, has the property𝑉(𝑥) → ∞ as 𝑥 approaches the boundary of 𝐷, and satisfies𝑉(𝑥(𝑡)) ≤ 𝑏 ∀𝑡 ≥ 0 along the solution of 𝑥̇ = 𝑓(𝑥) for𝑥(0) ∈ 𝐷 and some positive constant 𝑏.

According to previous description, we can choose a BLF
candidate as follows:

𝑉1 = 12 (log
𝑘2𝑏1𝑘2
𝑏1
− 𝑧21) , (4)

where log (⋅) denotes the natural logarithm. 𝑘𝑏1 is the con-
straint on 𝑧1 and satisfies the condition |𝑧1| < 𝑘𝑏1. Thus it can
be seen that 𝑉1 is positive definite, which grows to infinity
when its argument approaches to its finite limit 𝑘𝑏1.
Lemma 3 (see [24]). For function ∑𝑝

𝑘=1
𝑓𝑘1(𝑥1)𝜃𝑓𝜎(𝑡)𝑘1 , a

smooth function ℎ1(𝑥1) and an unknown positive constant 𝑙1
can be found:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑝∑
𝑘=1

𝑓𝑘1 (𝑥1) 𝜃𝑓𝜎(𝑡)𝑘1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝑙1ℎ1 (𝑥1) . (5)

Lemma 4 (see [10]). For any positive constant 𝑘𝑏1, any 𝑧1
satisfying |𝑧1| < 𝑘𝑏1, we have

log
𝑘2𝑏1𝑘2
𝑏1
− 𝑧21 <

𝑧1𝑘2
𝑏1
− 𝑧21 . (6)

In order to make the problem more analysable and
tractable, practical assumption is given for the adaptive state
controller.

Assumption 5 (see [24]). We can find a smooth function𝑓𝑘1(𝑥1) such that

𝑓𝑘1 (𝑥1) = 𝑓𝑘1 (𝑥1) 𝑧1. (7)

3. Main Results

In this section, an adaptive controller is designed based on
backstepping method by utilizing a BLF for systems (3).
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Step 1. Define 𝑧1 for 𝑥1 as the tracking error which is 𝑧1 =𝑥1 − 𝑦𝑑. Consider the first component of the system (3) and
we have the first-order partial derivative as

𝑧̇1 = 𝑥̇1 − ̇𝑦𝑑
= 𝑝∑
𝑘=1

𝑓𝑘1 (𝑥1) 𝜃𝑓𝜎(𝑡)𝑘1 + 𝜃𝜎(𝑡)𝑏 𝑔1 (𝑥1) 𝑥2 − ̇𝑦𝑑, (8)

Choose the following BLF candidate:

𝑉1 = 12 (log
𝑘2𝑏1𝑘2
𝑏1
− 𝑧21 + 𝑙̃

2
1) , (9)

where 𝑙̃1 = 𝑙1 − 𝑙̂1, 𝑙̂1 denotes the estimate of 𝑙1, and ̇̃𝑙1 = − ̇̂𝑙1.
We design a stabilizing function and an adaptive law as

𝛼1 = 1
𝜃𝑏𝑔1 (−𝑙̂1ℎ1𝑧1 − 𝜆1𝑧1 + ̇𝑦𝑑) ,

̇̂𝑙1 = 𝑧21ℎ1𝑘2
𝑏1
− 𝑧21 ,

(10)

where 𝜆1 is a positive gain. Besides, let 𝑧2 = 𝑥2 − 𝛼1. On the
basis of (10) andAssumption 1, we know that the time derivate
of 𝑉1 satisfies

𝑉̇1 = 𝑧1𝑧̇1𝑘2
𝑏1
− 𝑧21 + 𝑙̃1

̇̃𝑙1 = 𝑧1 (∑
𝑝

𝑘=1
𝑓𝑘1 (𝑥1) 𝜃𝜎(𝑡)𝑓𝑘1 + 𝜃𝜎(𝑡)𝑏 𝑔1 (𝑧2 + 𝛼1) ̇𝑦𝑑)𝑘2

𝑏1
− 𝑧21 + 𝑙̃1 ̇̃𝑙1

≤ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨
2 𝑙1ℎ1 + 𝜃𝜎(𝑡)𝑏 𝑔1𝑧1 (𝑧2 + (1/𝜃𝑏𝑔1) (−𝑙̂1ℎ1𝑧1 − 𝜆1𝑧1 + 𝑦̇𝑑𝑧1)) − 𝑦̇𝑑 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨2𝑘2

𝑏1
− 𝑧21 + 𝑙̃1(−

󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨2 ℎ1𝑘2
𝑏1
− 𝑧21) ≤ −

𝜆1𝑧21𝑘2
𝑏1
− 𝑧21 ,

(11)

where 𝑦̇𝑑 can be found that ̇𝑦𝑑 = 𝑦̇𝑑𝑧1.
Step 2. Consider the second component of system (3). Since𝑧̇2 = 𝑥̇2−𝛼̇1, we can find a 𝛼̇1 satisfying 𝛼̇1 = 𝛼̇1𝑧2 and choose
the following BLF candidate:

𝑉2 = 2∑
𝑖=1

12 (log
𝑘2𝑏𝑖𝑘2
𝑏𝑖
− 𝑧2𝑖 + 𝑙̃

2
𝑖 ) . (12)

The stabilizing function and the adaptive law at this step
are designed as

𝛼2 = 1
𝜃𝑏𝑔2 (−𝑙̂2ℎ2𝑧2 − 𝜆2𝑧2 − 𝛼̇1 −

𝑘2𝑏2 − 𝑧22𝑘2
𝑏1
− 𝑧21 𝜃𝑏𝑔1𝑧1) ,

̇̂𝑙1 = 𝑧22ℎ2𝑘2
𝑏2
− 𝑧22 .

(13)

Using (13) and Assumption 1, we know that the time
derivate of 𝑉2 satisfies
𝑉̇2 = 𝑧1𝑧̇1𝑘2

𝑏1
− 𝑧21 + 𝑙̃1

̇̃𝑙1 + 𝑧2𝑧̇2𝑘2
𝑏2
− 𝑧22 + 𝑙̃2

̇̃𝑙2 ≤ − 𝜆1𝑧21𝑘2
𝑏1
− 𝑧21

+ 𝑧1𝑧2𝜃𝜎(𝑡)𝑏 𝑔1𝑘2
𝑏1
− 𝑧21 + 𝑧2𝑧̇2𝑘2

𝑏2
− 𝑧22 + 𝑙̃2

̇̃𝑙2 ≤ − 𝜆1𝑧21𝑘2
𝑏1
− 𝑧21

+ 𝑧1𝑧2𝜃𝜎(𝑡)𝑏 𝑔1𝑘2
𝑏1
− 𝑧21

+ 𝑧2 (∑
𝑝

𝑘=1
𝑓𝑘2 (𝑥2) 𝜃𝜎(𝑡)𝑓𝑘2 + 𝜃𝜎(𝑡)𝑏 𝑔2 (𝑥2) (𝑧3 + 𝛼2) − 𝛼̇1)𝑘2

𝑏2
− 𝑧22

+ 𝑙̃2 ̇̃𝑙2 ≤ − 𝜆2𝑧22𝑘2
𝑏2
− 𝑧22 −

𝜆1𝑧21𝑘2
𝑏1
− 𝑧21 ≤ 0.

(14)

For the general case, we employ the BLF when 𝑛 > 2:
𝑉𝑖 =

𝑗∑
𝑖=1

12 (log
𝑘2𝑏𝑖𝑘2
𝑏𝑖
− 𝑧2𝑖 + 𝑙̃

2
𝑖 ) , 2 < 𝑗 < 𝑛. (15)

By the same token, we design stabilizing functions and
adaptive laws:

𝛼𝑖 = 1
𝜃𝑏𝑔𝑖 (−𝑙̂𝑖ℎ𝑖𝑧𝑖 − 𝜆𝑖𝑧𝑖 + 𝛼̇𝑖−1

− 𝑘2𝑏𝑖 − 𝑧2𝑖𝑘2
𝑏(𝑖−1)

− 𝑧2𝑖−1 𝜃𝑏𝑔𝑖−1𝑧𝑖−1) ,
̇̂𝑙1 = 𝑧2𝑖 ℎ𝑖𝑘2
𝑏𝑖
− 𝑧2𝑖 .

(16)

Finally, we obtain the stabilizing function and the adap-
tive law of step 𝑛:
𝛼𝑛
= 1
𝜃𝑏𝑔𝑛 (−𝑙̂𝑛ℎ𝑛𝑧𝑛 − 𝜆𝑛𝑧𝑛 + 𝛼̇𝑛−1 −

𝜃𝑏𝑔𝑛−1𝑧𝑛−1𝑘2
𝑏(𝑛−1)

− 𝑧2𝑛−1) ,
(17)

𝑢 = 𝛼𝑛, (18)

̇̂𝑙𝑛 = 𝑧2𝑛ℎ𝑛. (19)

Theorem 6. Considering system (3), the adaptive state feed-
back controller (18) and the adaptive law (19) can guarantee
lim𝑡→∞(𝑥1 − 𝑦𝑑) = 0 and |𝑥𝑖| ≤ 𝑏 under arbitrary switching
signal and 𝑏 is a positive constant.
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̇xi = F(t)
i (xi) + (t)

b

̇xn = F(t)
n (xn) + (t)

b

y = x1

x1

1 =
1

bg1

i =
1

bgi

(−liℎizi − izi + ̇i−1 −
k2bi − z2i

k2
b(i−1)

− z2i−1
bgi−1zi−1)

̇li =
z2i ℎi

k2
bi

− z2i

u =
1

bgn

(−lnℎnzn − nzn + ̇n−1 −
bgn−1zn−1

k2
b(n−1)

− z2n−1
)

V =
n−1∑
i−1

1

2
(log k2bi

k2
bi

− z2i
+ l

2
i ) +

1

2
(z2n + l

2
n)

̇xi

̇xn

ż

̇ln = z2nℎn

(−liℎ1z1 − 1z1 + ̇yd)

gi (xi) xi+1

gn (xn) u

Figure 1: Block diagram of the adaptive control system.

Proof. Choose the BLF as follows:

𝑉 = 𝑛−1∑
𝑖=1

12 (log
𝑘2𝑏𝑖𝑘2
𝑏𝑖
− 𝑧2𝑖 + 𝑙̃

2
𝑖 ) + 12 (𝑧2𝑛 + 𝑙̃2𝑛) . (20)

According to the adaptive state feedback controller (18)
and the adaptive law (19), we obtain the time derivative of the
BLF:

𝑉̇ ≤ −𝑛−1∑
𝑖=1

𝜆𝑖𝑧2𝑖𝑘2
𝑏𝑖
− 𝑧2𝑖 +

𝑧𝑛−1𝑧𝑛𝜃𝜎(𝑡)𝑏 𝑔𝑛−1𝑘2
𝑏(𝑛−1)

− 𝑧2𝑛−1 + 𝑧𝑛𝑧̇𝑛 + 𝑙̃𝑛
̇̃𝑙𝑛

≤ − 𝑛∑
𝑖=1

𝜆𝑖𝑧2𝑖𝑘2
𝑏𝑖
− 𝑧2𝑖 ≤ 0.

(21)

It can be seen that all the signals are bounded. By
Barbalat’s Lemma, 𝑧𝑖 will converge to zero. According to the
nature of BLF, we can guarantee lim𝑡→∞(𝑥1 − 𝑦𝑑) = 0 and|𝑥𝑖| ≤ 𝑏, among them 𝑏 being a positive constant. The output

of the system tracks the desired trajectory 𝑦𝑑 asymptotically
and certain states are constrained.

The design procedure of the proposed control scheme
could be viewed from the block diagram in Figure 1.

4. Simulations

In this section, we give examples and simulations to demon-
strate the proposed result.

Example 1. Consider the following switched nonlinear sys-
tem:

𝑥̇1 = [𝑓11 𝑓12 𝑓13] 𝜃𝜎1 + 𝜃𝜎𝑏𝑔1 (𝑥1) 𝑥2
𝑥̇2 = [𝑓21 𝑓22 𝑓23] 𝜃𝜎2 + 𝜃𝜎𝑏𝑔2 (𝑥2) 𝑢,

𝜎 (𝑡) : [0,∞) 󳨀→ {1, 2} ,
(22)
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Figure 2: State trajectory 𝑥1 tracking converges the desired trajec-
tory 𝑦𝑑 = sin𝑥.
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Figure 3: State trajectory 𝑥2 tracking converges the desired trajec-
tory 𝛼1.
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Figure 4: Error trajectory 𝑧1 converges to zero.

where [𝑓11 𝑓12 𝑓13] = [𝑥21 𝑥1 1], [𝑓21 𝑓22 𝑓23] =[𝑥22 𝑥2 cos(𝑥2)], 𝑔1(𝑥1) = 2𝑥21 + 2, 𝑔2(𝑥2) = 𝑥2 + 3.
Parameters 𝜃𝜎1 , 𝜃𝜎2 , and 𝜃𝜎𝑏 are unknown. According to pre-
vious discussions, we can find smooth functions and satisfy
the conditions of Theorem 6 that

ℎ1 (𝑥1) = 2𝑥21 + 5,
ℎ2 (𝑥2) = 𝑥22 + 2.

(23)

The desired trajectory is𝑦𝑑 = sin 𝑥, and the tracking error
constraint is |𝑧1| < 2, |𝑧2| < 10.

−5

0

5

10

1 2 3 40

Time (s)

z 2

Figure 5: Error trajectory 𝑧2 converges to zero.

Figures 2 and 3 present the simulation results of the
outputs of the system tracking the desired trajectory 𝑦𝑑
asymptotically, and the tracking errors constraints are never
violated. And it is evident from Figures 4 and 5 that tracking
error trajectories converge to zero.

After that, we design a controller using QLF. Choose𝑉1 =(1/2)(𝑧21 + 𝑙̃21), and we can show that 𝜙1 is a common virtual
control for the first component of the system (22). Then,
define 𝑧2 for 𝑥2 as the tracking error which 𝑧2 = 𝑥2 − 𝜙1,𝑉2 = ∑2𝑖=1(1/2)(𝑧22 + 𝑙̃22) is a common Lyapunov for the system
(22). We will follow the same design procedure for the design
of the controller based on the QLF method and compare the
simulation results between BLF and QLF.

As it can be clearly seen from Figures 6 and 7, we know
that the asymptotic tracking performance is achieved and 𝑥1
tracks the desired trajectory 𝑦𝑑 asymptotically based on BLF
method. However, when the QLF is utilized with the same
parameters and design processes, the output is more volatile
than the BLF one, and the convergence rate is slower than the
BLF method.

Example 2. Considering the above system, the control objec-
tive is that the output of system 𝑥1 tracks the desired
trajectory 𝑦𝑑 = 0.3. Two different tracking error constraints
are given that |𝑧1| < 0.2, |𝑧1| < 0.15.

From Figure 8, we know that asymptotic tracking per-
formance is achieved when the BLF is used with the initial
value 𝑥(0) = (0.25, −1)𝑇. However, when the QLF is used
with the same initial value, the state constraint is violated.
The simulation results in Figures 9 and 10 show that we can
know that tracking errors 𝑧1 satisfy constraints using the BLF.
The errors 𝑧1 do not transgress boundary that |𝑧1| < 0.2 and|𝑧1| < 0.15, and the objective is achieved.

5. Conclusions

In this paper, we have studied the constraint adaptive tracking
control problem of switched nonlinear systems with uncer-
tain parameters using the BLF and backstepping method.
Asymptotic output tracking and states constraint have been
ensured, andwe guarantee that the state constraint is violated,
which has been verified by the simulations. Next wewill focus
on studying constraint adaptive output feedback control and
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Figure 6: State trajectories 𝑥1 tracking converge the desired trajec-
tory (BLF-QLF).

BLF
QLF

2

1.5

1

0.5

0

−0.5

−1
0 2 3 41

Time (s)

Tr
ac

ki
ng

 er
ro

rz
1

Figure 7: Error trajectories 𝑧1 converge to zero (BLF-QLF).
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Figure 8: State trajectories 𝑥1 tracking converges the desired
trajectory (|𝑧1| < 0.2).

designing an adaptive controller and stabilization under arbi-
trary switching signals can be achieved by output feedback.
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Figure 9: Tracking error trajectories 𝑧1 satisfies error constraint|𝑧1| < 0.2.
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Figure 10: Tracking error trajectories 𝑧1 satisfies error constraint|𝑧1| < 0.15.
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