837,193 research outputs found
Robustness of airline alliance route networks
The aim of this study is to analyze the robustness of the three major airline alliances’ (i.e., Star Alliance, oneworld and SkyTeam) route networks. Firstly, the normalization of a multi-scale measure of vulnerability is proposed in order to perform the analysis in networks with different sizes, i.e., number of nodes. An alternative node selection criterion is also proposed in order to study robustness and vulnerability of such complex networks, based on network efficiency. And lastly, a new procedure – the inverted adaptive strategy – is presented to sort the nodes in order to anticipate network breakdown. Finally, the robustness of the three alliance networks are analyzed with (1) a normalized multi-scale measure of vulnerability, (2) an adaptive strategy based on four different criteria and (3) an inverted adaptive strategy based on the efficiency criterion. The results show that Star Alliance has the most resilient route network, followed by SkyTeam and then oneworld. It was also shown that the inverted adaptive strategy based on the efficiency criterion – inverted efficiency – shows a great success in quickly breaking networks similar to that found with betweenness criterion but with even better results.Peer ReviewedPostprint (author’s final draft
Enhanced vaccine control of epidemics in adaptive networks
We study vaccine control for disease spread on an adaptive network modeling
disease avoidance behavior. Control is implemented by adding Poisson
distributed vaccination of susceptibles. We show that vaccine control is much
more effective in adaptive networks than in static networks due to an
interaction between the adaptive network rewiring and the vaccine application.
Disease extinction rates using vaccination are computed, and orders of
magnitude less vaccine application is needed to drive the disease to extinction
in an adaptive network than in a static one
Adaptive networks: coevolution of disease and topology
Adaptive networks have been recently introduced in the context of disease
propagation on complex networks. They account for the mutual interaction
between the network topology and the states of the nodes. Until now, existing
models have been analyzed using low-complexity analytic formalisms, revealing
nevertheless some novel dynamical features. However, current methods have
failed to reproduce with accuracy the simultaneous time evolution of the
disease and the underlying network topology. In the framework of the adaptive
SIS model of Gross et al. [Phys. Rev. Lett. 96, 208701 (2006)], we introduce an
improved compartmental formalism able to handle this coevolutionary task
successfully. With this approach, we analyze the interplay and outcomes of both
dynamical elements, process and structure, on adaptive networks featuring
different degree distributions at the initial stage.Comment: 11 pages, 8 figures, 1 appendix. To be published in Physical Review
Consensus formation on adaptive networks
The structure of a network can significantly influence the properties of the
dynamical processes which take place on them. While many studies have been
devoted to this influence, much less attention has been devoted to the
interplay and feedback mechanisms between dynamical processes and network
topology on adaptive networks. Adaptive rewiring of links can happen in real
life systems such as acquaintance networks where people are more likely to
maintain a social connection if their views and values are similar. In our
study, we consider different variants of a model for consensus formation. Our
investigations reveal that the adaptation of the network topology fosters
cluster formation by enhancing communication between agents of similar opinion,
though it also promotes the division of these clusters. The temporal behavior
is also strongly affected by adaptivity: while, on static networks, it is
influenced by percolation properties, on adaptive networks, both the early and
late time evolution of the system are determined by the rewiring process. The
investigation of a variant of the model reveals that the scenarios of
transitions between consensus and polarized states are more robust on adaptive
networks.Comment: 11 pages, 14 figure
Recommended from our members
Adaptive routing in active networks
New conceptual ideas on network architectures have been proposed in the recent past. Current store-andforward
routers are replaced by active intermediate systems,
which are able to perform computations on transient packets,
in a way that results very helpful for developing and
deploying new protocols in a short time. This paper introduces a new routing algorithm, based on a congestion
metric, and inspired by the behavior of ants in nature. The
use of the Active Networks paradigm associated with a cooperative learning environment produces a robust, decentralized algorithm capable of adapting quickly to changing conditions
Neural networks art: solving problems with multiple solutions and new teaching algorithm
A new discrete neural networks adaptive resonance theory (ART), which allows solving problems with multiple solutions, is developed. New algorithms neural networks teaching ART to prevent degradation and reproduction classes at training noisy input data is developed. Proposed learning algorithms discrete ART networks, allowing obtaining different classification methods of input
- …
