284 research outputs found

    Prospectiva de seguridad de las redes de sensores inalámbricos

    Get PDF
    En las Redes de Sensores Inalámbricos (WSN), los nodos son vulnerables a los ataques de seguridad porque están instalados en un entorno difícil, con energía y memoria limitadas, baja capacidad de procesamiento y transmisión de difusión media; por lo tanto, identificar las amenazas, los retos y las soluciones de seguridad y privacidad es un tema candente hoy en día. En este artículo se analizan los trabajos de investigación que se han realizado sobre los mecanismos de seguridad para la protección de las WSN frente a amenazas y ataques, así como las tendencias que surgen en otros países junto con futuras líneas de investigación. Desde el punto de vista metodológico, este análisis se muestra a través de la visualización y estudio de trabajos indexados en bases de datos como IEEE, ACM, Scopus y Springer, con un rango de 7 años como ventana de observación, desde 2013 hasta 2019. Se obtuvieron un total de 4.728 publicaciones, con un alto índice de colaboración entre China e India. La investigación planteó desarrollos, como avances en los principios de seguridad y mecanismos de defensa, que han llevado al diseño de contramedidas en la detección de intrusiones. Por último, los resultados muestran el interés de la comunidad científica y empresarial por el uso de la inteligencia artificial y el aprendizaje automático (ML) para optimizar las medidas de rendimiento.In Wireless Sensor Networks (WSN), nodes are vulnerable to security attacks because they are installed in a harsh environment with limited power and memory, low processing power, and medium broadcast transmission. Therefore, identifying threats, challenges, and solutions of security and privacy is a talking topic today. This article analyzes the research work that has been carried out on the security mechanisms for the protection of WSN against threats and attacks, as well as the trends that emerge in other countries combined with future research lines. From the methodological point of view, this analysis is shown through the visualization and study of works indexed in databases such as IEEE, ACM, Scopus, and Springer, with a range of 7 years as an observation window, from 2013 to 2019. A total of 4,728 publications were obtained, with a high rate of collaboration between China and India. The research raised developments, such as advances in security principles and defense mechanisms, which have led to the design of countermeasures in intrusion detection. Finally, the results show the interest of the scientific and business community in the use of artificial intelligence and machine learning (ML) to optimize performance measurements

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    A comprehensive survey of V2X cybersecurity mechanisms and future research paths

    Get PDF
    Recent advancements in vehicle-to-everything (V2X) communication have notably improved existing transport systems by enabling increased connectivity and driving autonomy levels. The remarkable benefits of V2X connectivity come inadvertently with challenges which involve security vulnerabilities and breaches. Addressing security concerns is essential for seamless and safe operation of mission-critical V2X use cases. This paper surveys current literature on V2X security and provides a systematic and comprehensive review of the most relevant security enhancements to date. An in-depth classification of V2X attacks is first performed according to key security and privacy requirements. Our methodology resumes with a taxonomy of security mechanisms based on their proactive/reactive defensive approach, which helps identify strengths and limitations of state-of-the-art countermeasures for V2X attacks. In addition, this paper delves into the potential of emerging security approaches leveraging artificial intelligence tools to meet security objectives. Promising data-driven solutions tailored to tackle security, privacy and trust issues are thoroughly discussed along with new threat vectors introduced inevitably by these enablers. The lessons learned from the detailed review of existing works are also compiled and highlighted. We conclude this survey with a structured synthesis of open challenges and future research directions to foster contributions in this prominent field.This work is supported by the H2020-INSPIRE-5Gplus project (under Grant agreement No. 871808), the ”Ministerio de Asuntos Económicos y Transformacion Digital” and the European Union-NextGenerationEU in the frameworks of the ”Plan de Recuperación, Transformación y Resiliencia” and of the ”Mecanismo de Recuperación y Resiliencia” under references TSI-063000-2021-39/40/41, and the CHIST-ERA-17-BDSI-003 FIREMAN project funded by the Spanish National Foundation (Grant PCI2019-103780).Peer ReviewedPostprint (published version

    Survey and Systematization of Secure Device Pairing

    Full text link
    Secure Device Pairing (SDP) schemes have been developed to facilitate secure communications among smart devices, both personal mobile devices and Internet of Things (IoT) devices. Comparison and assessment of SDP schemes is troublesome, because each scheme makes different assumptions about out-of-band channels and adversary models, and are driven by their particular use-cases. A conceptual model that facilitates meaningful comparison among SDP schemes is missing. We provide such a model. In this article, we survey and analyze a wide range of SDP schemes that are described in the literature, including a number that have been adopted as standards. A system model and consistent terminology for SDP schemes are built on the foundation of this survey, which are then used to classify existing SDP schemes into a taxonomy that, for the first time, enables their meaningful comparison and analysis.The existing SDP schemes are analyzed using this model, revealing common systemic security weaknesses among the surveyed SDP schemes that should become priority areas for future SDP research, such as improving the integration of privacy requirements into the design of SDP schemes. Our results allow SDP scheme designers to create schemes that are more easily comparable with one another, and to assist the prevention of persisting the weaknesses common to the current generation of SDP schemes.Comment: 34 pages, 5 figures, 3 tables, accepted at IEEE Communications Surveys & Tutorials 2017 (Volume: PP, Issue: 99

    SECURE AND EFFICIENT FAULT NODE DETECTION IN WIRELESS SENSOR NETWORKS

    Get PDF
    Propose an included, energy efficient, resource allocation framework for overcommitted clouds. The concord makes massive energy investments by 1) minimizing Physical Machine overload occurrences via virtual machine resource usage monitoring and prophecy, and 2) reducing the number of active PMs via efficient VM relocation and residency. Using real Google data consisting of a 29 day traces collected from a crowd together contain more than 12K PMs, we show that our proposed framework outperforms existing overload avoidance techniques and prior VM migration strategies by plummeting the number of unexpected overloads, minimizing migration overhead, increasing resource utilization, and reducing cloud energy consumption.&nbsp

    A Comprehensive Survey on the Cooperation of Fog Computing Paradigm-Based IoT Applications: Layered Architecture, Real-Time Security Issues, and Solutions

    Get PDF
    The Internet of Things (IoT) can enable seamless communication between millions of billions of objects. As IoT applications continue to grow, they face several challenges, including high latency, limited processing and storage capacity, and network failures. To address these stated challenges, the fog computing paradigm has been introduced, purpose is to integrate the cloud computing paradigm with IoT to bring the cloud resources closer to the IoT devices. Thus, it extends the computing, storage, and networking facilities toward the edge of the network. However, data processing and storage occur at the IoT devices themselves in the fog-based IoT network, eliminating the need to transmit the data to the cloud. Further, it also provides a faster response as compared to the cloud. Unfortunately, the characteristics of fog-based IoT networks arise traditional real-time security challenges, which may increase severe concern to the end-users. However, this paper aims to focus on fog-based IoT communication, targeting real-time security challenges. In this paper, we examine the layered architecture of fog-based IoT networks along working of IoT applications operating within the context of the fog computing paradigm. Moreover, we highlight real-time security challenges and explore several existing solutions proposed to tackle these challenges. In the end, we investigate the research challenges that need to be addressed and explore potential future research directions that should be followed by the research community.©2023 The Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/fi=vertaisarvioitu|en=peerReviewed

    Wireless Sensor Network Security model using Zero Knowledge Protocol

    Get PDF
    Abstract: -Wireless Sensor Networks (WSNs) offer an excellent opportunity to monitor environments, and have a lot of interesting applications, some of which are quite sensitive in nature and require full proof secured environment. The security mechanisms used for wired networks cannot be directly used in sensor networks as there is no user-controlling of each individual node, wireless environment, and more importantly, scarce energy resources. In this paper, we address some of the special security threats and attacks in WSNs. We propose a scheme for detection of distributed sensor cloning attack and use of zero knowledge protocol (ZKP) for verifying the authenticity of the sender sensor nodes. The cloning attack is addressed by attaching a unique fingerprint to each node that depends on the set of neighboring nodes and itself. The fingerprint is attached with every message a sensor node sends. The ZKP is used to ensure non transmission of crucial cryptographic information in the wireless network in order to avoid man-in-the middle (MITM) attack and replay attack. The paper presents a detailed analysis for various scenarios and also analyzes the performance and cryptographic strength
    corecore