11,222 research outputs found

    A proposed study of multiple scattering through clouds up to 1 THz

    Get PDF
    A rigorous computation of the electromagnetic field scattered from an atmospheric liquid water cloud is proposed. The recent development of a fast recursive algorithm (Chew algorithm) for computing the fields scattered from numerous scatterers now makes a rigorous computation feasible. A method is presented for adapting this algorithm to a general case where there are an extremely large number of scatterers. It is also proposed to extend a new binary PAM channel coding technique (El-Khamy coding) to multiple levels with non-square pulse shapes. The Chew algorithm can be used to compute the transfer function of a cloud channel. Then the transfer function can be used to design an optimum El-Khamy code. In principle, these concepts can be applied directly to the realistic case of a time-varying cloud (adaptive channel coding and adaptive equalization). A brief review is included of some preliminary work on cloud dispersive effects on digital communication signals and on cloud liquid water spectra and correlations

    Dynamic Adaptive Point Cloud Streaming

    Full text link
    High-quality point clouds have recently gained interest as an emerging form of representing immersive 3D graphics. Unfortunately, these 3D media are bulky and severely bandwidth intensive, which makes it difficult for streaming to resource-limited and mobile devices. This has called researchers to propose efficient and adaptive approaches for streaming of high-quality point clouds. In this paper, we run a pilot study towards dynamic adaptive point cloud streaming, and extend the concept of dynamic adaptive streaming over HTTP (DASH) towards DASH-PC, a dynamic adaptive bandwidth-efficient and view-aware point cloud streaming system. DASH-PC can tackle the huge bandwidth demands of dense point cloud streaming while at the same time can semantically link to human visual acuity to maintain high visual quality when needed. In order to describe the various quality representations, we propose multiple thinning approaches to spatially sub-sample point clouds in the 3D space, and design a DASH Media Presentation Description manifest specific for point cloud streaming. Our initial evaluations show that we can achieve significant bandwidth and performance improvement on dense point cloud streaming with minor negative quality impacts compared to the baseline scenario when no adaptations is applied.Comment: 6 pages, 23rd ACM Packet Video (PV'18) Workshop, June 12--15, 2018, Amsterdam, Netherland

    When Queueing Meets Coding: Optimal-Latency Data Retrieving Scheme in Storage Clouds

    Full text link
    In this paper, we study the problem of reducing the delay of downloading data from cloud storage systems by leveraging multiple parallel threads, assuming that the data has been encoded and stored in the clouds using fixed rate forward error correction (FEC) codes with parameters (n, k). That is, each file is divided into k equal-sized chunks, which are then expanded into n chunks such that any k chunks out of the n are sufficient to successfully restore the original file. The model can be depicted as a multiple-server queue with arrivals of data retrieving requests and a server corresponding to a thread. However, this is not a typical queueing model because a server can terminate its operation, depending on when other servers complete their service (due to the redundancy that is spread across the threads). Hence, to the best of our knowledge, the analysis of this queueing model remains quite uncharted. Recent traces from Amazon S3 show that the time to retrieve a fixed size chunk is random and can be approximated as a constant delay plus an i.i.d. exponentially distributed random variable. For the tractability of the theoretical analysis, we assume that the chunk downloading time is i.i.d. exponentially distributed. Under this assumption, we show that any work-conserving scheme is delay-optimal among all on-line scheduling schemes when k = 1. When k > 1, we find that a simple greedy scheme, which allocates all available threads to the head of line request, is delay optimal among all on-line scheduling schemes. We also provide some numerical results that point to the limitations of the exponential assumption, and suggest further research directions.Comment: Original accepted by IEEE Infocom 2014, 9 pages. Some statements in the Infocom paper are correcte
    corecore