16,404 research outputs found

    Perceptually-Driven Video Coding with the Daala Video Codec

    Full text link
    The Daala project is a royalty-free video codec that attempts to compete with the best patent-encumbered codecs. Part of our strategy is to replace core tools of traditional video codecs with alternative approaches, many of them designed to take perceptual aspects into account, rather than optimizing for simple metrics like PSNR. This paper documents some of our experiences with these tools, which ones worked and which did not. We evaluate which tools are easy to integrate into a more traditional codec design, and show results in the context of the codec being developed by the Alliance for Open Media.Comment: 19 pages, Proceedings of SPIE Workshop on Applications of Digital Image Processing (ADIP), 201

    A two-stage video coding framework with both self-adaptive redundant dictionary and adaptively orthonormalized DCT basis

    Full text link
    In this work, we propose a two-stage video coding framework, as an extension of our previous one-stage framework in [1]. The two-stage frameworks consists two different dictionaries. Specifically, the first stage directly finds the sparse representation of a block with a self-adaptive dictionary consisting of all possible inter-prediction candidates by solving an L0-norm minimization problem using an improved orthogonal matching pursuit with embedded orthonormalization (eOMP) algorithm, and the second stage codes the residual using DCT dictionary adaptively orthonormalized to the subspace spanned by the first stage atoms. The transition of the first stage and the second stage is determined based on both stages' quantization stepsizes and a threshold. We further propose a complete context adaptive entropy coder to efficiently code the locations and the coefficients of chosen first stage atoms. Simulation results show that the proposed coder significantly improves the RD performance over our previous one-stage coder. More importantly, the two-stage coder, using a fixed block size and inter-prediction only, outperforms the H.264 coder (x264) and is competitive with the HEVC reference coder (HM) over a large rate range

    Quality Adaptive Least Squares Trained Filters for Video Compression Artifacts Removal Using a No-reference Block Visibility Metric

    No full text
    Compression artifacts removal is a challenging problem because videos can be compressed at different qualities. In this paper, a least squares approach that is self-adaptive to the visual quality of the input sequence is proposed. For compression artifacts, the visual quality of an image is measured by a no-reference block visibility metric. According to the blockiness visibility of an input image, an appropriate set of filter coefficients that are trained beforehand is selected for optimally removing coding artifacts and reconstructing object details. The performance of the proposed algorithm is evaluated on a variety of sequences compressed at different qualities in comparison to several other deblocking techniques. The proposed method outperforms the others significantly both objectively and subjectively

    Mitigation of H.264 and H.265 Video Compression for Reliable PRNU Estimation

    Full text link
    The photo-response non-uniformity (PRNU) is a distinctive image sensor characteristic, and an imaging device inadvertently introduces its sensor's PRNU into all media it captures. Therefore, the PRNU can be regarded as a camera fingerprint and used for source attribution. The imaging pipeline in a camera, however, involves various processing steps that are detrimental to PRNU estimation. In the context of photographic images, these challenges are successfully addressed and the method for estimating a sensor's PRNU pattern is well established. However, various additional challenges related to generation of videos remain largely untackled. With this perspective, this work introduces methods to mitigate disruptive effects of widely deployed H.264 and H.265 video compression standards on PRNU estimation. Our approach involves an intervention in the decoding process to eliminate a filtering procedure applied at the decoder to reduce blockiness. It also utilizes decoding parameters to develop a weighting scheme and adjust the contribution of video frames at the macroblock level to PRNU estimation process. Results obtained on videos captured by 28 cameras show that our approach increases the PRNU matching metric up to more than five times over the conventional estimation method tailored for photos

    Mesh-based video coding for low bit-rate communications

    Get PDF
    In this paper, a new method for low bit-rate content-adaptive mesh-based video coding is proposed. Intra-frame coding of this method employs feature map extraction for node distribution at specific threshold levels to achieve higher density placement of initial nodes for regions that contain high frequency features and conversely sparse placement of initial nodes for smooth regions. Insignificant nodes are largely removed using a subsequent node elimination scheme. The Hilbert scan is then applied before quantization and entropy coding to reduce amount of transmitted information. For moving images, both node position and color parameters of only a subset of nodes may change from frame to frame. It is sufficient to transmit only these changed parameters. The proposed method is well-suited for video coding at very low bit rates, as processing results demonstrate that it provides good subjective and objective image quality at a lower number of required bits

    The AV1 Constrained Directional Enhancement Filter (CDEF)

    Full text link
    This paper presents the constrained directional enhancement filter designed for the AV1 royalty-free video codec. The in-loop filter is based on a non-linear low-pass filter and is designed for vectorization efficiency. It takes into account the direction of edges and patterns being filtered. The filter works by identifying the direction of each block and then adaptively filtering with a high degree of control over the filter strength along the direction and across it. The proposed enhancement filter is shown to improve the quality of the Alliance for Open Media (AOM) AV1 and Thor video codecs in particular in low complexity configurations.Comment: 5 page
    • …
    corecore