52,003 research outputs found

    A Neural Network Method for Mixture Estimation for Vegetation Mapping

    Full text link
    While most forest maps identify only the dominant vegetation class in delineated stands, individual stands are often better characterized by a mix of vegetation types. Many land management applications, including wildlife habitat studies, can benefit from knowledge of mixes. This paper examines various algorithms that use data from the Landsat Thematic Mapper (TM) satellite to estimate mixtures of vegetation types within forest stands. Included in the study are maximum likelihood classification and linear mixture models as well as a new methodology based on the ARTMAP neural network. Two paradigms are considered: classification methods, which describe stand-level vegetation mixtures as mosaics of pixels, each identified with its primary vegetation class; and mixture methods, which treat samples as blends of vegetation, even at the pixel level. Comparative analysis of these mixture estimation methods, tested on data from the Plumas National Forest, yields the following conclusions: (1) accurate estimates of proportions of hardwood and conifer cover within stands can be obtained, particularly when brush is not present in the understory; (2) ARTMAP outperforms statistical methods and linear mixture models in both the classification and the mixture paradigms; (3) topographic correction fails to improve mapping accuracy; and (4) the new ARTMAP mixture system produces the most accurate overall results. The Plumas data set has been made available to other researchers for further development of new mapping methods and comparison with the quantitative studies presented here, which establish initial benchmark standards.National Science Foundation (IRI 94-0165, SBR 95-13889); Office of Naval Research (N00014-95-1-0409, N00014-95-0657); Region 5 Remote Sensing Laboratory of the U.S. Forest Servic

    Multitask Diffusion Adaptation over Networks

    Full text link
    Adaptive networks are suitable for decentralized inference tasks, e.g., to monitor complex natural phenomena. Recent research works have intensively studied distributed optimization problems in the case where the nodes have to estimate a single optimum parameter vector collaboratively. However, there are many important applications that are multitask-oriented in the sense that there are multiple optimum parameter vectors to be inferred simultaneously, in a collaborative manner, over the area covered by the network. In this paper, we employ diffusion strategies to develop distributed algorithms that address multitask problems by minimizing an appropriate mean-square error criterion with â„“2\ell_2-regularization. The stability and convergence of the algorithm in the mean and in the mean-square sense is analyzed. Simulations are conducted to verify the theoretical findings, and to illustrate how the distributed strategy can be used in several useful applications related to spectral sensing, target localization, and hyperspectral data unmixing.Comment: 29 pages, 11 figures, submitted for publicatio

    Wideband Super-resolution Imaging in Radio Interferometry via Low Rankness and Joint Average Sparsity Models (HyperSARA)

    Full text link
    We propose a new approach within the versatile framework of convex optimization to solve the radio-interferometric wideband imaging problem. Our approach, dubbed HyperSARA, solves a sequence of weighted nuclear norm and l21 minimization problems promoting low rankness and joint average sparsity of the wideband model cube. On the one hand, enforcing low rankness enhances the overall resolution of the reconstructed model cube by exploiting the correlation between the different channels. On the other hand, promoting joint average sparsity improves the overall sensitivity by rejecting artefacts present on the different channels. An adaptive Preconditioned Primal-Dual algorithm is adopted to solve the minimization problem. The algorithmic structure is highly scalable to large data sets and allows for imaging in the presence of unknown noise levels and calibration errors. We showcase the superior performance of the proposed approach, reflected in high-resolution images on simulations and real VLA observations with respect to single channel imaging and the CLEAN-based wideband imaging algorithm in the WSCLEAN software. Our MATLAB code is available online on GITHUB
    • …
    corecore