6,894 research outputs found

    Darwinian Data Structure Selection

    Get PDF
    Data structure selection and tuning is laborious but can vastly improve an application's performance and memory footprint. Some data structures share a common interface and enjoy multiple implementations. We call them Darwinian Data Structures (DDS), since we can subject their implementations to survival of the fittest. We introduce ARTEMIS a multi-objective, cloud-based search-based optimisation framework that automatically finds optimal, tuned DDS modulo a test suite, then changes an application to use that DDS. ARTEMIS achieves substantial performance improvements for \emph{every} project in 55 Java projects from DaCapo benchmark, 88 popular projects and 3030 uniformly sampled projects from GitHub. For execution time, CPU usage, and memory consumption, ARTEMIS finds at least one solution that improves \emph{all} measures for 86%86\% (37/4337/43) of the projects. The median improvement across the best solutions is 4.8%4.8\%, 10.1%10.1\%, 5.1%5.1\% for runtime, memory and CPU usage. These aggregate results understate ARTEMIS's potential impact. Some of the benchmarks it improves are libraries or utility functions. Two examples are gson, a ubiquitous Java serialization framework, and xalan, Apache's XML transformation tool. ARTEMIS improves gson by 16.516.5\%, 1%1\% and 2.2%2.2\% for memory, runtime, and CPU; ARTEMIS improves xalan's memory consumption by 23.523.5\%. \emph{Every} client of these projects will benefit from these performance improvements.Comment: 11 page

    Genetic Programming for Smart Phone Personalisation

    Full text link
    Personalisation in smart phones requires adaptability to dynamic context based on user mobility, application usage and sensor inputs. Current personalisation approaches, which rely on static logic that is developed a priori, do not provide sufficient adaptability to dynamic and unexpected context. This paper proposes genetic programming (GP), which can evolve program logic in realtime, as an online learning method to deal with the highly dynamic context in smart phone personalisation. We introduce the concept of collaborative smart phone personalisation through the GP Island Model, in order to exploit shared context among co-located phone users and reduce convergence time. We implement these concepts on real smartphones to demonstrate the capability of personalisation through GP and to explore the benefits of the Island Model. Our empirical evaluations on two example applications confirm that the Island Model can reduce convergence time by up to two-thirds over standalone GP personalisation.Comment: 43 pages, 11 figure

    A rewriting grammar for heat exchanger network structure evolution with stream splitting

    Get PDF
    The design of cost optimal heat exchanger networks is a difficult optimisation problem due both to the nonlinear models required and also the combinatorial size of the search space. When stream splitting is considered, the combinatorial aspects make the problem even harder. This paper describes the implementation of a two level evolutionary algorithm based on a string rewriting grammar for the evolution of the heat exchanger network structure. A biological analogue of genotypes and phenotypes is used to describe structures and specific solutions respectively. The top level algorithm evolves structures while the lower level optimises specific structures. The result is a hybrid optimisation procedure which can identify the best structures including stream splitting. Case studies from the literature are presented to demonstrate the capabilities of the novel procedure

    The SOS Platform: Designing, Tuning and Statistically Benchmarking Optimisation Algorithms

    Get PDF
    open access articleWe present Stochastic Optimisation Software (SOS), a Java platform facilitating the algorithmic design process and the evaluation of metaheuristic optimisation algorithms. SOS reduces the burden of coding miscellaneous methods for dealing with several bothersome and time-demanding tasks such as parameter tuning, implementation of comparison algorithms and testbed problems, collecting and processing data to display results, measuring algorithmic overhead, etc. SOS provides numerous off-the-shelf methods including: (1) customised implementations of statistical tests, such as the Wilcoxon rank-sum test and the Holm–Bonferroni procedure, for comparing the performances of optimisation algorithms and automatically generating result tables in PDF and formats; (2) the implementation of an original advanced statistical routine for accurately comparing couples of stochastic optimisation algorithms; (3) the implementation of a novel testbed suite for continuous optimisation, derived from the IEEE CEC 2014 benchmark, allowing for controlled activation of the rotation on each testbed function. Moreover, we briefly comment on the current state of the literature in stochastic optimisation and highlight similarities shared by modern metaheuristics inspired by nature. We argue that the vast majority of these algorithms are simply a reformulation of the same methods and that metaheuristics for optimisation should be simply treated as stochastic processes with less emphasis on the inspiring metaphor behind them

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018
    • …
    corecore