131 research outputs found

    Pricing Financial Derivatives using Radial Basis Function generated Finite Differences with Polyharmonic Splines on Smoothly Varying Node Layouts

    Full text link
    In this paper, we study the benefits of using polyharmonic splines and node layouts with smoothly varying density for developing robust and efficient radial basis function generated finite difference (RBF-FD) methods for pricing of financial derivatives. We present a significantly improved RBF-FD scheme and successfully apply it to two types of multidimensional partial differential equations in finance: a two-asset European call basket option under the Black--Scholes--Merton model, and a European call option under the Heston model. We also show that the performance of the improved method is equally high when it comes to pricing American options. By studying convergence, computational performance, and conditioning of the discrete systems, we show the superiority of the introduced approaches over previously used versions of the RBF-FD method in financial applications

    A Fast Adaptive Wavelet Scheme in RBF Collocation for Nearly Singular Potential PDEs

    Get PDF
    We present a wavelet based adaptive scheme and investigate the efficiency of this scheme for solving nearly singular potential PDEs. Multiresolution wavelet analysis (MRWA) provides a firm mathematical foundation by projecting the solution of PDE onto a nested sequence of approximation spaces. The wavelet coefficients then were used as an estimation of the sensible regions for node adaptation. The proposed adaptation scheme requires negligible calculation time due to the existence of the fast DiscreteWavelet Transform (DWT). Certain aspects of the proposed adaptive scheme are discussed through numerical examples. It has been shown that the proposed adaptive scheme can detect the singularities both in the domain and near the boundaries. Moreover, the proposed adaptive scheme can be utilized for capturing the regions with high gradient both in the solution and its spatial derivatives. Due to the simplicity of the proposed method, it can be efficiently applied to large scale nearly singular engineering problems

    Numerical cubature on scattered data by adaptive interpolation

    Full text link
    We construct cubature methods on scattered data via resampling on the support of known algebraic cubature formulas, by different kinds of adaptive interpolation (polynomial, RBF, PUM). This approach gives a promising alternative to other recent methods, such as direct meshless cubature by RBF or least-squares cubature formulas

    Convexity and solvability for compactly supported radial basis functions with different shapes

    Get PDF
    It is known that interpolation with radial basis functions of the same shape can guarantee a non-singular interpolation matrix, whereas little is known when one uses various shapes. In this paper, we prove that a class of compactly supported radial basis functions are convex on a certain region; based on this local convexity and ready local geometrical property of the interpolation points, we construct a sufficient condition which guarantees diagonally dominant interpolation matrices for radial basis functions interpolation with various shapes. The proof is constructive and can be used to design algorithms directly. Real applications from 3D surface reconstruction are used\ud to verify the results

    Wavelet based Adaptive RBF Method for Nearly Singular Poisson-Type Problems on Irregular Domains

    Get PDF
    We present a wavelet based adaptive scheme and investigate the efficiency of this scheme for solving nearly singular potential PDEs over irregularly shaped domains. For a problem defined over Ω ∈ ℜd, the boundary of an irregularly shaped domain, Γ, is defined as a boundary curve that is a product of a Heaviside function along the normal direction and a piecewise continuous tangential curve. The link between the original wavelet based adaptive method presented in Libre, Emdadi, Kansa, Shekarchi, and Rahimian (2008, 2009) or LEKSR method and the generalized one is given through the use of simple Heaviside masking procedure. In addition level dependent thresholding were introduced to improve the efficiency and convergence rate of the solution. We will show how the generalized wavelet based adaptive method can be applied for detecting nearly singularities in Poisson type PDEs over irregular domains. The numerical examples have illustrated that the proposed method is powerful to analyze the Poisson type PDEs with rapid changes in gradients and nearly singularities

    Local Radial Basis Function Methods for Solving Partial Differential Equations

    Get PDF
    Meshless methods are relatively new numerical methods which have gained popularity in computational and engineering sciences during the last two decades. This dissertation develops two new localized meshless methods for solving a variety partial differential equations. Recently, some localized meshless methods have been introduced in order to handle large-scale problems, or to avoid ill-conditioned problems involving global radial basis function approximations. This dissertation explains two new localized meshelss methods, each derived from the global Method of Approximate Particular Solutions (MAPS). One method, the Localized Method of Approximate Particular Solutions (LMAPS), is used for elliptic and parabolic partial differential equations (PDEs) using a global sparse linear system of equations. The second method, the Explicit Localized Method of Approximate Particular Solutions (ELMAPS), is constructed for solving parabolic types of partial differential equations by inverting a finite number of small linear systems. For both methods, the only information that is needed in constructing the approximating solution to PDEs, consists of the local nodes that fall within the domain of influence of the data. Since the methods are completely mesh free, they can be used for irregularly shaped domains. Both methods are tested and compared with existing global and local meshless methods. The results illustrate the accuracy and efficiency of our proposed methods

    RBF multiscale collocation for second order elliptic boundary value problems

    Get PDF
    In this paper, we discuss multiscale radial basis function collocation methods for solving elliptic partial differential equations on bounded domains. The approximate solution is constructed in a multi-level fashion, each level using compactly supported radial basis functions of smaller scale on an increasingly fine mesh. On each level, standard symmetric collocation is employed. A convergence theory is given, which builds on recent theoretical advances for multiscale approximation using compactly supported radial basis functions. We are able to show that the convergence is linear in the number of levels. We also discuss the condition numbers of the arising systems and the effect of simple, diagonal preconditioners, now proving rigorously previous numerical observations

    Curvature based characterization of radial basis functions: application to interpolation

    Get PDF
    Choosing the scale or shape parameter of radial basis functions (RBFs) is a well-documented but still an open problem in kernel-based methods. It is common to tune it according to the applications, and it plays a crucial role both for the accuracy and stability of the method. In this paper, we first devise a direct relation between the shape parameter of RBFs and their curvature at each point. This leads to characterizing RBFs to scalable and unscalable ones. We prove that all scalable RBFs lie in the -class which means that their curvature at the point xj is proportional to, where cj is the corresponding spatially variable shape parameter at xj. Some of the most commonly used RBFs are then characterized and classified accordingly to their curvature. Then, the fundamental theory of plane curves helps us recover univariate functions from scattered data, by enforcing the exact and approximate solutions have the same curvature at the point where they meet. This leads to introducing curvature-based scaled RBFs with shape parameters depending on the function values and approximate curvature values of the function to be approximated. Several numerical experiments are devoted to show that the method performs better than the standard fixed-scale basis and some other shape parameter selection methods

    A RBF partition of unity collocation method based on finite difference for initial-boundary value problems

    Full text link
    Meshfree radial basis function (RBF) methods are popular tools used to numerically solve partial differential equations (PDEs). They take advantage of being flexible with respect to geometry, easy to implement in higher dimensions, and can also provide high order convergence. Since one of the main disadvantages of global RBF-based methods is generally the computational cost associated with the solution of large linear systems, in this paper we focus on a localizing RBF partition of unity method (RBF-PUM) based on a finite difference (FD) scheme. Specifically, we propose a new RBF-PUM-FD collocation method, which can successfully be applied to solve time-dependent PDEs. This approach allows to significantly decrease ill-conditioning of traditional RBF-based methods. Moreover, the RBF-PUM-FD scheme results in a sparse matrix system, reducing the computational effort but maintaining at the same time a high level of accuracy. Numerical experiments show performances of our collocation scheme on two benchmark problems, involving unsteady convection-diffusion and pseudo-parabolic equations
    • …
    corecore