9,477 research outputs found

    Adaptive importance sampling technique for markov chains using stochastic approximation

    Get PDF
    For a discrete-time finite-state Markov chain, we develop an adaptive importance sampling scheme to estimate the expected total cost before hitting a set of terminal states. This scheme updates the change of measure at every transition using constant or decreasing step-size stochastic approximation. The updates are shown to concentrate asymptotically in a neighborhood of the desired zero-variance estimator. Through simulation experiments on simple Markovian queues, we observe that the proposed technique performs very well in estimating performance measures related to rare events associated with queue lengths exceeding prescribed thresholds. We include performance comparisons of the proposed algorithm with existing adaptive importance sampling algorithms on some examples. We also discuss the extension of the technique to estimate the infinite horizon expected discounted cost and the expected average cost

    An Adaptive Interacting Wang-Landau Algorithm for Automatic Density Exploration

    Full text link
    While statisticians are well-accustomed to performing exploratory analysis in the modeling stage of an analysis, the notion of conducting preliminary general-purpose exploratory analysis in the Monte Carlo stage (or more generally, the model-fitting stage) of an analysis is an area which we feel deserves much further attention. Towards this aim, this paper proposes a general-purpose algorithm for automatic density exploration. The proposed exploration algorithm combines and expands upon components from various adaptive Markov chain Monte Carlo methods, with the Wang-Landau algorithm at its heart. Additionally, the algorithm is run on interacting parallel chains -- a feature which both decreases computational cost as well as stabilizes the algorithm, improving its ability to explore the density. Performance is studied in several applications. Through a Bayesian variable selection example, the authors demonstrate the convergence gains obtained with interacting chains. The ability of the algorithm's adaptive proposal to induce mode-jumping is illustrated through a trimodal density and a Bayesian mixture modeling application. Lastly, through a 2D Ising model, the authors demonstrate the ability of the algorithm to overcome the high correlations encountered in spatial models.Comment: 33 pages, 20 figures (the supplementary materials are included as appendices

    Group Importance Sampling for Particle Filtering and MCMC

    Full text link
    Bayesian methods and their implementations by means of sophisticated Monte Carlo techniques have become very popular in signal processing over the last years. Importance Sampling (IS) is a well-known Monte Carlo technique that approximates integrals involving a posterior distribution by means of weighted samples. In this work, we study the assignation of a single weighted sample which compresses the information contained in a population of weighted samples. Part of the theory that we present as Group Importance Sampling (GIS) has been employed implicitly in different works in the literature. The provided analysis yields several theoretical and practical consequences. For instance, we discuss the application of GIS into the Sequential Importance Resampling framework and show that Independent Multiple Try Metropolis schemes can be interpreted as a standard Metropolis-Hastings algorithm, following the GIS approach. We also introduce two novel Markov Chain Monte Carlo (MCMC) techniques based on GIS. The first one, named Group Metropolis Sampling method, produces a Markov chain of sets of weighted samples. All these sets are then employed for obtaining a unique global estimator. The second one is the Distributed Particle Metropolis-Hastings technique, where different parallel particle filters are jointly used to drive an MCMC algorithm. Different resampled trajectories are compared and then tested with a proper acceptance probability. The novel schemes are tested in different numerical experiments such as learning the hyperparameters of Gaussian Processes, two localization problems in a wireless sensor network (with synthetic and real data) and the tracking of vegetation parameters given satellite observations, where they are compared with several benchmark Monte Carlo techniques. Three illustrative Matlab demos are also provided.Comment: To appear in Digital Signal Processing. Related Matlab demos are provided at https://github.com/lukafree/GIS.gi

    On computational tools for Bayesian data analysis

    Full text link
    While Robert and Rousseau (2010) addressed the foundational aspects of Bayesian analysis, the current chapter details its practical aspects through a review of the computational methods available for approximating Bayesian procedures. Recent innovations like Monte Carlo Markov chain, sequential Monte Carlo methods and more recently Approximate Bayesian Computation techniques have considerably increased the potential for Bayesian applications and they have also opened new avenues for Bayesian inference, first and foremost Bayesian model choice.Comment: This is a chapter for the book "Bayesian Methods and Expert Elicitation" edited by Klaus Bocker, 23 pages, 9 figure

    Simulation in Statistics

    Full text link
    Simulation has become a standard tool in statistics because it may be the only tool available for analysing some classes of probabilistic models. We review in this paper simulation tools that have been specifically derived to address statistical challenges and, in particular, recent advances in the areas of adaptive Markov chain Monte Carlo (MCMC) algorithms, and approximate Bayesian calculation (ABC) algorithms.Comment: Draft of an advanced tutorial paper for the Proceedings of the 2011 Winter Simulation Conferenc

    Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families

    Get PDF
    We propose Kernel Hamiltonian Monte Carlo (KMC), a gradient-free adaptive MCMC algorithm based on Hamiltonian Monte Carlo (HMC). On target densities where classical HMC is not an option due to intractable gradients, KMC adaptively learns the target's gradient structure by fitting an exponential family model in a Reproducing Kernel Hilbert Space. Computational costs are reduced by two novel efficient approximations to this gradient. While being asymptotically exact, KMC mimics HMC in terms of sampling efficiency, and offers substantial mixing improvements over state-of-the-art gradient free samplers. We support our claims with experimental studies on both toy and real-world applications, including Approximate Bayesian Computation and exact-approximate MCMC.Comment: 20 pages, 7 figure

    Orthogonal parallel MCMC methods for sampling and optimization

    Full text link
    Monte Carlo (MC) methods are widely used for Bayesian inference and optimization in statistics, signal processing and machine learning. A well-known class of MC methods are Markov Chain Monte Carlo (MCMC) algorithms. In order to foster better exploration of the state space, specially in high-dimensional applications, several schemes employing multiple parallel MCMC chains have been recently introduced. In this work, we describe a novel parallel interacting MCMC scheme, called {\it orthogonal MCMC} (O-MCMC), where a set of "vertical" parallel MCMC chains share information using some "horizontal" MCMC techniques working on the entire population of current states. More specifically, the vertical chains are led by random-walk proposals, whereas the horizontal MCMC techniques employ independent proposals, thus allowing an efficient combination of global exploration and local approximation. The interaction is contained in these horizontal iterations. Within the analysis of different implementations of O-MCMC, novel schemes in order to reduce the overall computational cost of parallel multiple try Metropolis (MTM) chains are also presented. Furthermore, a modified version of O-MCMC for optimization is provided by considering parallel simulated annealing (SA) algorithms. Numerical results show the advantages of the proposed sampling scheme in terms of efficiency in the estimation, as well as robustness in terms of independence with respect to initial values and the choice of the parameters

    Patterns of Scalable Bayesian Inference

    Full text link
    Datasets are growing not just in size but in complexity, creating a demand for rich models and quantification of uncertainty. Bayesian methods are an excellent fit for this demand, but scaling Bayesian inference is a challenge. In response to this challenge, there has been considerable recent work based on varying assumptions about model structure, underlying computational resources, and the importance of asymptotic correctness. As a result, there is a zoo of ideas with few clear overarching principles. In this paper, we seek to identify unifying principles, patterns, and intuitions for scaling Bayesian inference. We review existing work on utilizing modern computing resources with both MCMC and variational approximation techniques. From this taxonomy of ideas, we characterize the general principles that have proven successful for designing scalable inference procedures and comment on the path forward
    • …
    corecore