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1 Introduction

In this paper we develop adaptive importance sampling techniques to efficiently estimate
via simulation certain important and commonly used performance measures for finite state
space Markov chains with one step transition costs. We are primarily concerned with the
performance measure corresponding to the expected total cost till a specified terminal set
of states is hit, starting from any state. We call this the ‘expected cost till termination’
problem. Applications include estimation of many commonly encountered and important
rare event probabilities associated with Markov chains. These find wide applications in
communications networks, insurance, reliability systems etc. (see, e.g., Heidelberger 1995,
Juneja 2003). Another application is the estimation of mean time to failure in reliability
systems modelled as Markov chains. The proposed techniques may also be useful in efficient
approximate policy evaluation via simulation for a given policy associated with a Markov
decision process (see, e.g., Bertsekas and Tsitsiklis 1996).

In the last fifteen years there has been a significant interest in developing efficient im-
portance sampling-based simulation techniques for estimating probabilities associated with
rare events (see, e.g., Glynn and Iglehart 1989, Heidelberger 1995 for an introduction and
an overview). As is well known, importance sampling involves simulating the system un-
der a new probability measure and then suitably unbiasing the resultant simulation output.
Research in this area has largely focused on identifying a ‘static’ change of measure for effi-
ciently estimating rare events associated with simple stochastic models such as single queues
and random walks, and proving the effectiveness of the proposed change of measure. In more
complex settings such as queuing networks or general finite state space Markov chains, such
attempts have met with a limited success (see, e.g., Andradottir, Heyman and Ott 1996,
Heidelberger 1995, Juneja and Nicola 2003).

For the expected cost till termination problem in a finite state Markov chain setting, the
expression for the zero variance change of measure is well known, but involves knowing a
priori the quantities to be estimated (see Booth 1985, Kollman et al. 1999, Desai and
Glynn 2001; Kuruganti and Strickland 1995 develop this in a specialized setting). A num-
ber of adaptive importance sampling techniques have been proposed in the literature that
iteratively attempt to learn this zero variance change of measure. These usually involve gen-
erating many independent identically distributed sample paths till termination using a fixed
change of measure in an iteration. Each path typically involves a large number of transitions
of the Markov chain. One then updates the change of measure for the next iteration based
on these observations (see De Boer et al. 2000, De Boer 2001, Kollman et al. 1999, Desai
and Glynn 2001).

In this paper we approach the problem of learning the zero variance change of measure
(and hence the expected cost till termination) using a stochastic approximation framework,
in which the measure is updated after every transition of a single simulated sample path of the
Markov chain. As is typical in stochastic approximation, we may use either a small constant
step-size or decreasing step-sizes to smoothen the updates. We concurrently update the
estimates of the expected total cost till termination and those of the transition probabilities
associated with the change of measure. In this general setting, we prove that the proposed
iterative scheme concentrates with high probability in a neighborhood of the zero variance
change of measure. Empirically, we find that the proposed scheme performs very well.
Compared to other existing schemes, it offers the advantages of simple implementation, good
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performance (speed / accuracy) and robustness. This will be discussed in greater detail in
Section 4.

The key differences between our approach and the existing ones may be summarized
as follows: The existing methods rely on Monte Carlo-type estimation of expectations by
arithmetic means of independent samples based on the law of large numbers. Often, many
paths need to be generated to get a reasonably accurate estimator and these generated paths
may comprise of a large number of transitions. These paths are generated under a change of
measure, and for each path the likelihood ratio (ratio of the original measure and the change
of measure of the generated path) needs to be used in the computation of an unbiased
estimator. In the Markov chain framework, determining the likelihood ratio for a generated
path entails collecting the product of successive single transition likelihood ratios along the
path. The resultant output can have high variance unless the selection of the change of
measure is carefully managed.

Our approach takes an altogether different viewpoint. It attempts to solve a linear system
of equations satisfied by the desired averages, using stochastic approximation to do the
conditional averaging implicit in these equations. Thus, in particular, our method involves
using likelihood ratios of only single transitions at a time. This is a much simpler object
analytically and computationally. The conditional averaging of the stochastic approximation
scheme is also on a per transition basis. The scheme thus combines aspects of Monte Carlo
simulation with deterministic numerical schemes (such as fixed point iterations) that one may
employ to solve the linear system of equations in question. In fact, methodologically our
approach sits between pure simulation schemes and pure deterministic numerical schemes
and captures the trade-off between the two. While it may have lower variance than the
former, it may require less computational time compared to the latter for getting ball-park
estimates in large problems.

Note that even if our interest may be limited to estimating the expected cost till ter-
mination starting from a specified state, the proposed scheme estimates such expectations
for all states in the state space as initial states. We maintain that this is unavoidable in
any adaptive importance sampling scheme that tries to learn the zero variance change of
measure. This is because the definition of the latter involves knowing such expectations for
all initial states. Furthermore, estimating all such expectations has explicit utility in some
contexts, as will be noted in Section 4.

In Precup et al. (2000) and Randhawa and Juneja (2004) importance sampling is used
in conjunction with stochastic approximation-based learning techniques to estimate the ex-
pected cost till termination. These works, however, use a fixed or static change of mea-
sure, whereas our focus is on adaptively learning the best zero variance change of measure.
Stochastic approximation approaches to importance sampling in the specific context of op-
tion pricing have been developed in Vázquez-Abad and Dufresne (1998), Su and Fu (2000)
and Su and Fu (2002). These take a ‘stochastic gradient’-based approach using an approx-
imate gradient search. This is distinct from our approach which is closer to the ‘stochastic
fixed point iterations’ of the reinforcement learning literature.

The paper is organized as follows: Section 2 develops notation and gives an overview of
some existing relevant literature before stating our main adaptive algorithm. Convergence
of the proposed algorithm to the zero variance change of measure is shown in Section 3.
Section 4 discusses some related theoretical and practical issues. In particular, we discuss
the extension of the methodology to estimate the total discounted cost and the average cost in
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a finite state Markov chain setting. In Section 5, the simulation experiments are described.
Section 6 concludes with some pointers to future directions. A word on terminology: we
shall throughout use abbreviations ‘a.s.’ for ‘almost sure’ (meaning ‘with probability one’),
‘w.r.t.’ for ‘with respect to’, and ‘r.h.s.’ (resp., ‘l.h.s.’) for ‘right (resp., left) hand side’.

2 Background and the Proposed Algorithm

2.1 Notation

Consider a Markov chain (Xn : n ≥ 0) where each Xn takes values in a finite state space S.
Let P = (pxy : x, y ∈ S) denote its transition matrix and G = (g(x, y) ≥ 0 : x, y ∈ S) denote
the one-step costs associated with each transition. Let T ⊂ S denote the set of terminal
states and I = S − T denote the set of interior states. We assume that T is reachable from
all states in I. Thus τ

∆
= inf{n : Xn ∈ T} is an a.s. finite stopping time for all initial

values of X0. Let Ex[ · ] denote the expectation operator corresponding to the transition
matrix P and initial state x. We consider the problem of estimating the ‘value function’
J∗ = (J∗(x) : x ∈ S), where each J∗(x) denotes the total expected cost incurred along the
Markov chain starting from state x till the chain hits the terminal set. Specifically,

J∗(x) = Ex[
τ−1∑

k=0

g(Xk, Xk+1)]. (1)

Set J∗(x) = 0 for x ∈ T . This quantity is a typical ‘cost’ of interest in Markov decision
processes. Other similar costs will be discussed in section 4. This framework subsumes usual
objectives such as rare event probabilities if g is taken to be a suitable indicator random
variable. That is, if T = A ∪ R with A ∩ R = φ and g(x, y) = I{y∈R}, then J∗(x) for x ∈ I
denotes the probability of hitting set R before hitting set A, starting from the state x. Here
A may denote an ‘attractor set’, i.e., a set visited frequently by the Markov chain, while R
may denote a ‘rare set’. Similarly, in case of a discrete time Markov chain arising out of
uniformization of a continuous time Markov chain, if g(x, y) denotes the mean time spent in
state x (this will not depend on y) for each x ∈ I, then J∗(x) denotes the mean time to hit
set T starting from x.

2.2 Existing adaptive techniques

We first briefly describe the adaptive importance sampling methodology proposed in Booth
(1985) and applied in Kollman et al. (1999) and Desai and Glynn (2001). For ease of
presentation, we refer to it as the Adaptive Monte Carlo (AMC) algorithm. We then describe
the Cross-Entropy (CE) algorithm proposed in De Boer et al. (2000) and De Boer (2001).
These descriptions are useful as the AMC and the CE algorithms represent substantially
different approaches to adaptive importance sampling compared to the one we propose.
Later in Section 5, we compare via simulation the proposed algorithm with the AMC and
the CE algorithms on a small example.

The AMC algorithm proceeds iteratively as follows: First we select an initial importance
sampling transition matrix P (0) = (p(0)

xy : x ∈ I, y ∈ S) (e.g., this may correspond to the
original transition matrix). Then, with a state x ∈ I as the initial state, the Markov chain
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is simulated up till time τ using the transition matrix P (0), and the simulation output is
adjusted by using the appropriate likelihood ratio. The average of many such independent
samples gives an estimate J (1)(x). This is repeated independently for all x ∈ I, and (J (1)(x) :
x ∈ I) is an estimator of the solution (J∗(x) : x ∈ I).

Suppose that J (n) = (J (n)(x) : x ∈ S) denotes the best guess of the solution (J∗(x) : x ∈ S)
at the initiation of iteration n ≥ 1 (since J∗(x) = 0 for x ∈ T , we set J (n)(x) = 0 for such
x, for each n ≥ 1). This J (n) is used to construct a new importance sampling change of
measure that will then drive the sampling in the iteration n. The transition probabilities
P (n) = (p(n)

xy : x ∈ I, y ∈ S) associated with J (n) are given as:

p(n)
xy =

pxy(g(x, y) + J (n)(y))∑
z∈S pxz(g(x, z) + J (n)(z))

. (2)

Then, as with n = 0, with a state x ∈ I as the initial state, the Markov chain is simulated
up till time τ using the transition matrix P (n), the simulation output is adjusted by using the
appropriate likelihood ratio, and the average of many such independent samples gives a new
estimate J (n+1)(x). This is repeated independently for all x ∈ I, and the resultant estimators
(J (n+1)(x) : x ∈ I) determine the transition matrix P (n+1) used in the next iteration. This
process is repeated over a number of iterations, and it is shown that under certain conditions
the rate of convergence is exponential as a function of the number of iterations.

An important point to note is that the transition matrix corresponding to J∗ is the zero
variance estimator of J∗. We refer to this transition matrix as P ∗ = (p∗xy : x, y ∈ S). Note
that for x ∈ I and y ∈ S,

p∗xy =
pxy(g(x, y) + J∗(y))∑

z∈S pxz(g(x, z) + J∗(z))
=

pxy(g(x, y) + J∗(y))

J∗(x)
, (3)

where the last equation follows as J∗ satisfies the equations resulting from the one-step
analysis of the Markov chain. In our implementation in Section 5.1.2, J∗(x) denotes a
certain probability associated with an open Jackson network that is known to be positive for
x ∈ I (see Section 5.1.2, for detailed description). Thus, in our experiments, we keep each
J (n)(x) > 0 for n ≥ 1 and x ∈ I. This is achieved as follows: We initially assign reasonable
positive values to J (0)(x) for x ∈ I. If, for any n ≥ 1, x ∈ I, J (n+1)(x) equals zero, we set it
equal to J (n)(x).

De Boer et al. (2000) and De Boer (2001) consider a more specialized Markov chain where
T = A∪R, A∩R = φ and g(x, y) = I{y∈R}, so that J∗(x) equals the probability that starting
from state x, R is visited before A. Specifically, they consider a stable open Jackson queuing
network. The set A corresponds to the single state where all the queues are empty, and R
corresponds to the set of states where a prescribed threshold is crossed. The probability
of interest is the probability that starting from a single arrival to an empty network, the
aforementioned threshold is reached before the network re-empties.

The CE algorithm is also iterative: As in the AMC algorithm, first an initial importance
sampling transition matrix P (0) = (p(0)

xy : x ∈ I, y ∈ S) is selected. Suppose that at iteration

n ≥ 0, the importance sampling transition matrix is P (n) = (p(n)
xy : x ∈ I, y ∈ S). Using this

transition matrix, a large number of paths are generated that originate from the attractor
set of states and terminate when either the attractor or the rare set is hit. Let k denote the
number of such paths generated. Let Ii(RE) denote the indicator function of path i that
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takes value one if the rare set is hit and zero otherwise. The estimator for the rare event
probability at iteration n equals

1

k

k∑

i=1

Li ∗ Ii(RE),

where Li denotes the likelihood ratio of path i, i.e., the ratio of the original probability
of the path (corresponding to transition matrix P ) and the new probability of the path
(corresponding to transition matrix P (n)). The new p(n+1)

xy corresponds to the ratio

∑k
i=1 Li ∗Nxy(i)Ii(RE)

∑k
i=1 Li ∗Nx(i)Ii(RE)

,

where:

1. Nxy(i) denotes the number of transitions from state x to state y along the path i,

2. Nx(i) denotes the total number of transitions from state x along the path i.

It is easy to see (e.g., De Boer 2001) that as k → ∞, p(n)
xy → p∗xy. Note that when

p∗xy > 0 for some x ∈ I, y ∈ I ∪ R, we do not want p(n)
xy to be zero. This is achieved in

our implementation of this algorithm in Section 5.1.2 as follows: if the numerator above
is found to be zero for such an (x, y) transition, we set p(n+1)

xy = p(n)
xy and then suitably

normalize the resulting probabilities from state x (we select p(0)
xy > 0 for such transitions). If

the denominator itself is zero, all probabilities out of x are left unchanged.
When the state space is large, the above references also propose a number of elegant

modifications to their method. We, however, do not implement these. This is discussed
further in Section 5.

2.3 The proposed algorithm

Let a > 0. This will serve as the ‘step-size’ or ‘learning parameter’. Let µ denote a dis-
tribution with support I such that for any state in I there is a positive probability that
the Markov chain with µ as the initial distribution and transition matrix P visits it before
hitting the set T . Since T is reachable from any state in I, such a µ always exists, e.g., if
µ assigns equal probability to each state in I. (In some cases, we may be able to choose a
µ concentrated at a single point in I.) Such a µ is used to reset the Markov chain in our
algorithm every time the set T is hit. Let d denote the cardinality of S, that is, d = |S|.

Our algorithm involves generating a path via simulation as follows:

• Select a state x0 ∈ I with distribution µ and select (J (0)(x) > 0 : x ∈ I). Intuitively,
one expects that closer (J (0)(x) > 0 : x ∈ I) is to (J∗(x) : x ∈ I), the better it is.
Since, (J∗(x) : x ∈ I) is not known, any reasonable choice for (J (0)(x) > 0 : x ∈ I) may
be made. Similarly, the initial transition probabilities (p(0)

xy : x ∈ I, y ∈ S) are selected.
For example, these may equal the original transition probabilities. These probabilities
are used to generate the next state x1 in the simulation.
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• Case 1: Suppose xn ∈ I. At transition n, state xn+1 is generated using (p(n)
xy : x ∈

I, y ∈ S). The updated values (J (n+1)(x) : x ∈ I) and (p(n+1)
xy : x ∈ I, y ∈ S) are

determined as follows:

J (n+1)(xn) = (1− a)J (n)(xn) + a(g(xn, xn+1) + J (n)(xn+1))

(
pxnxn+1

p
(n)
xnxn+1

)
, (4)

and J (n+1)(x) = J (n)(x) for x 6= xn. Also,

p̃(n+1)
xnxn+1

= max(pxnxn+1

(
g(xn, xn+1) + J (n+1)(xn+1)

J (n+1)(xn)

)
, δ), (5)

where δ > 0 is a small scalar threshold which ensures that the likelihood ratio
(pxnxn+1/p

(n)
xnxn+1

) remains bounded from above by a constant (say) M > 0. We
pick a δ much smaller than min(pxy : x ∈ I, y ∈ S, pxy > 0) as a good guess. Let
p̃(n+1)

xny = p̃(n)
xny for y 6= xn+1. Then, the probabilities (p(n+1)

xny : y ∈ S) are obtained
through the normalization, i.e.,

p(n+1)
xny =

p̃(n+1)
xny∑

z∈S p̃
(n+1)
xnz

.

Again for x 6= xn, p(n+1)
xy = p(n)

xy for all y. Finally, n is incremented by 1.

Case 2: If xn ∈ T , we select xn+1 in I according to µ, and the simulation is
resumed. (J (n+1)(x) : x ∈ I) and (p(n+1)

xy : x ∈ I, y ∈ S) are then set to (J (n)(x) :

x ∈ I), and (p(n)
xy : x ∈ I, y ∈ S) and n is incremented by 1.

The computational effort in generating state xn+1 from xn is O(d) (it may be smaller if
the transition matrix of the Markov chain is sparse, as for the Jackson networks). Also,
the computational effort for the normalization of probabilities at each transition (xn, xn+1)
may be O(d), as the probability corresponding to each transition (xn, y) for y ∈ S needs to
be adjusted. This may be reduced to O(1) using the following approach: Suppose that at
transition n we have stored a positive constant NCn(xn) and non-negative numbers (qxny :
y ∈ S) such that p(n)

xny = qxny/NCn(xn) for y ∈ S. Then, using these stored numbers, it
is straightforward to generate in O(d) time a transition (xn, xn+1), with xn+1 having the
distribution (p(n)

xny : y ∈ S). Now by setting

NCn+1(xn) = NCn(xn)(1 + p̃(n+1)
xnxn+1

− qxnxn+1/NCn(xn)),

resetting qxn,xn+1 = NCn(xn)p̃(n+1)
xnxn+1

, and noting that

p(n+1)
xny =

p(n)
xny

1 + p̃
(n+1)
xnxn+1 − p

(n)
xnxn+1

for y 6= xn+1 and

p(n+1)
xnxn+1

=
p̃(n+1)

xnxn+1

1 + p̃
(n+1)
xnxn+1 − p

(n)
xnxn+1

,
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it follows that p(n+1)
xny = qxny/NCn+1(xn) for y ∈ S. This is an O(1) computation. The algo-

rithm may then be appropriately adjusted. For example, p(n)
xnxn+1

is replaced by qxnxn+1/NCn(xn)
in (4) in this case.

Issues related to the stopping rule for the algorithm are discussed later in Section 4. When
decreasing step-sizes (an : n ≥ 1) are used, an replaces a in (4). The usual assumptions
from stochastic approximation theory apply:

∑
n an = ∞,

∑
n a2

n < ∞. For notational
convenience, we refer to the proposed algorithm as the Adaptive Stochastic Approximation
(ASA) algorithm.

Typically, our interest is in estimating J∗(x) for a particular state x, or more generally,
estimating a single function J̃ of (J∗(x) : x ∈ I). For example, in rare event settings we may
be interested in estimating the probability that R is hit before A where T = A ∪ R with
A ∩ R = φ and g(x, y) = I{y∈R}, starting from a specified initial distribution on the states
I. To generate confidence intervals, each run of the proposed algorithm may be run for a
large number of transitions m and ñ such independent runs may be generated. Let J̃i(m)
denote the estimate based on the final reading of the algorithm in the run i ≤ ñ. Note that
(J̃i(m) : i ≤ ñ) are i.i.d. Then,

∑
i≤ñ J̃i(m)/ñ denotes the sample mean of J̃ . Similarly, the

sample variance s2 equals

1

ñ− 1

∑

i≤ñ


J̃i(m)− (

1

ñ

∑

j≤ñ

J̃j(m))




2

.

With these estimates, for large ñ, the approximate 95% confidence interval for J̃ may be
constructed by using standard central limit theorem based normal approximations. When ñ
is small, say < 30, then approximations involving Student-t distribution may be used (see
any standard simulation text, e.g., Fishman 1996).

In our algorithm (J (0)(x) : x ∈ I) may differ significantly from (J∗(x) : x ∈ I) and
hence for each i, J̃i(0) may differ significantly from J̃ . Therefore, in each independent
run, the simulation output may have a significant initialization bias (this bias becomes
negligible asymptotically at an exponential rate; see the discussion in Section 4). Hence,
generating independent runs is wasteful in that the initialization bias is incurred in all the
runs. Alternatively, using our algorithm, a single long run (J̃(m) : m ≥ 0) may be generated,
and a method of batch means (see Bratley et al. 1987) may be used to construct confidence
intervals. Here some threshold value k0 is chosen so that the bias is small for iterates J̃(k)
for k ≥ k0. Thereafter, the iterates from the algorithm are divided into contiguous batches
of size m0 each. Then the sample average over k0 ≤ m < k0 + m0, i.e.,

1

m0

k0+m0−1∑

m=k0

J̃(m)

denotes the average of the first batch, the sample average over k0 + m0 ≤ m < k0 + 2m0

denotes the average of the second batch, and so on. For large k0 and m0, these averages may
be assumed to be approximately i.i.d. by invoking a suitable ‘mixing’ property and may be
used to construct confidence intervals. In our experiments, however, we generate independent
samples to avoid the added approximation that the batch means technique introduces. Note
that this way our estimates of computational effort are conservative. Furthermore, we note
that in many of our experiments, the iterates generated are very close to each other, so that
even a single sample provides a reliable estimate.
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In certain applications, we may be interested in estimating J∗(x) for all x ∈ I. In par-
ticular, we may be interested in generating confidence intervals that hold uniformly for all
estimates of (J∗(x) : x ∈ I). This may happen in the Markov decision process setting,
where the above algorithm may be used to approximately evaluate a policy via simulation.
In the existing literature, techniques relying on Bonferroni inequality exist for developing
simultaneous confidence intervals for all the estimates. The drawback of these techniques is
that the computational effort required becomes enormous as the state space I becomes large
(see, e.g., Fishman 1996 for a discussion on related issues). An alternative approach (which
we do not follow here, but shall discuss later) is to use the functional central limit theorems
associated with stochastic approximation schemes to come up with simultaneous confidence
intervals.

3 Convergence Analysis

This section briefly sketches the theoretical underpinnings of our scheme. It draws upon the
theory of stochastic approximation algorithms, notably the analytic techniques therein that
have been developed for reinforcement learning algorithms. Our main results are Theorems
1 and 2 below. The expectation throughout what follows is w.r.t. the actual law of the
non-stationary chain {xn} generated by the simulation. We first take up the decreasing
step-sizes case for which the theory is readily available. Let

p̂xy =
max(p∗xy, δ)∑
z max(p∗xz, δ)

.

This equals p∗xy if indeed δ < p∗xy. Let P̂ denote the corresponding transition matrix. In the
remaining discussion, || · || denotes the Euclidean norm. Later we introduce two other norms,
|| · ||w, || · ||∞. These are all equivalent in the sense that any one of them can be bounded
from above by a constant times the other.

Theorem 1 For step-sizes (an : n ≥ 1) satisfying the conditions
∑

n an = ∞ and
∑

n a2
n < ∞,

the iterates satisfy a.s.,

sup
n
||J (n)||2 < ∞,

J (n) → J∗,
P (n) → P̂ .

Proof Rewrite (4) as

J (n+1)(xn) = J (n)(xn) + an(
∑

j

pxnj(g(xn, j) + J (n)(j))− J (n)(xn))

+an[(g(xn, xn+1) + J (n)(xn+1))

(
pxnxn+1

p
(n)
xnxn+1

)

−∑

j

pxnj(g(xn, j) + J (n)(j))]. (6)
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This can be rewritten as

J (n+1)(i) = J (n)(i) + anI(xn = i)[(Fi(J
(n))− J (n)(i)) + Mi(n + 1)] (7)

for all i ∈ I, where:

1.1. F = [F1, · · · , F|I|]T : R|I| →R|I| is defined by

Fi([x1, · · · , x|I|]) =
∑

j∈I

pijxj +
∑

j∈S

pijg(i, j), i ∈ I.

2. {M(n)}, M(n) = [M1(n),M2(n), · · · ,M|I|(n)], is a sequence of random vectors in R|I|

satisfying

E[M(n + 1)|xm,m ≤ n] = 0,

||M(n + 1)|| ≤ K(1 + ||Jn||),

for some constant K > 0. Specifically, M(n + 1) will be the vector whose all but the
xn−th elements are zero and the xn−th element is given by the expression in square
brackets in (6).

The matrix P̄
∆
= (pxy : x, y ∈ I) is sub-stochastic. Thus by the Perron-Frobenius theorem,

it has an eigenvalue α ∈ (0, 1) and the associated positive eigenvector w̄ = [w1, · · · , w|I|].
Define the associated weighted sup-norm ||x||w ∆

= maxi∈I | xi

wi
|. It is easily verified (see, e.g.,

the proof of Lemma 9, Tsitsiklis 1994) that

||F (x)− F (y)||w ≤ α||x− y||w. (8)

That is, F is a contraction w.r.t. this norm. In particular, it has a unique fixed point, viz.,
J∗. The a.s. boundedness of the iterations now follows by applying Theorem 1 of Tsitsiklis
(1994) (see also Prop. 4.7, pp. 159-160, of Bertsekas and Tsitsiklis 1996). Note also that if

||x||∞ ∆
= maxi |xi|, then F is non-expansive w.r.t. this norm in the sense that

||F (x)− F (y)||∞ ≤ ||x− y||∞.

The first two claims now follow from Theorem 3 of Tsitsiklis (1994). The last claim then
follows by our definition of {p∗xy} and our choice of δ. 2

For the constant step-size case, we have as the counterpart Theorem 2 below. As the re-
sults of Tsitsiklis (1994) are explicitly for the decreasing step-size case, we adapt instead the
arguments of Borkar and Meyn (2000) based on the ‘o.d.e.’ (for ‘ordinary differential equa-
tions ’) approach to stochastic approximation. This approach, which goes back to Derevitskii
and Fradkov (1974), treats the stochastic approximation iterations as a noisy discretization
of a limiting o.d.e. and establishes their limiting behavior by proving that they track the
o.d.e. trajectories in an appropriate sense.

10



Theorem 2 Suppose δ ≈ O(a). Then, under a sufficiently small constant step-size a > 0,
the iterates satisfy

sup
n

E[||J (n)||2] < ∞, (9)

lim sup
n→∞

E[||J (n) − J∗||2] = O(a), (10)

lim sup
n→∞

E[||P (n) − P̂ ||2] = O(a). (11)

Proof We adapt Theorem 2.1(ii) and Theorem 2.3(ii) of Borkar and Meyn (2000) for our
purposes. The arguments used by Borkar and Meyn (2000) to prove these require the o.d.e.
limit of the stochastic approximation. In our case, this is

ẋ(t) = Π(t)(F (x(t))− x(t)),

where Π(t) is a diagonal matrix for each t whose diagonal elements are nonnegative and add
to one (see, e.g., Lemma 3.1 - Theorem 3.1, pp. 845-848, in Section 3 of Borkar 1998 where
such a result is proved for decreasing step-sizes). Note that this differs from the o.d.e. limit
for the ‘synchronous’ iterations, in which all components of J (n) are updated concurrently. In
that case, the matrix Π(t) on the r.h.s. is missing. The latter arises here due to averaging of
the indicator I(xn = i) on the r.h.s. of (7). That is, one views {xn} as ‘Markov’ noise for the
stochastic approximation scheme and applies the standard theory of averaging w.r.t. such
noise (Section 8.4, Kushner and Yin 1997). The vector form of the iteration has the diagonal
matrix with I(xn = i) as the i−th diagonal element. These get replaced by their average,
leading to the Π(t) term above. Because the underlying chain is non-stationary with slowly
varying transition probabilities, there will be explicit time-dependence. Intuitively, the i−th
diagonal element of Π(t) will reflect the relative frequency with which the i−th component
is being updated. This o.d.e. may also be written as

ẋ(t) = F̃t(x(t))− x(t), (12)

where F̃t(x)
∆
= (I − Π(t))x + Π(t)F (x), I being the identity matrix. The only difference

between this and the framework of the Borkar and Meyn (2000) referred to above is the
explicit time dependence of the r.h.s. of this o.d.e. Nevertheless, from the proofs of the
aforementioned theorems in Borkar and Meyn (2000), it will clearly suffice to show:

1. J∗ is the unique globally (with reference to both the initial state and the initial time)
asymptotically stable equilibrium of (12) (which ensures (10) if the second moment of
the iterates remain bounded) and,

2. the origin is the globally (in the above sense) asymptotically stable equilibrium of the
o.d.e.

ẋ(t) = F̄t(x(t))− x(t), (13)

where, F̄t(x)
∆
= (I − Π(t))x + Π(t)F̂ (x), for

F̂i([x1, · · · , x|I|]) =
∑

j∈I

pijxj, i ∈ I.

This in turn ensures that the the second moment of the iterates do indeed remain
bounded. (F̂ corresponds to replacing g identically by zero in the definition of F .)

11



That is, we need the properties of F used in the proofs of the aforementioned theorems of
Borkar and Meyn (2000) to hold also for F̃t uniformly in t. In view of (8), these follow exactly
as in Theorem 3.1 of Borkar and Soumyanath (1997) if we show that the diagonal elements
of Π(t) remain bounded away from zero. This is because the latter condition ensures that

||F̃t(x)− F̃t(y)||w ≤ β̄||x− y||w
for a common β̄ ∈ (0, 1), and likewise for {F̄t}. In our case, β̄ = 1 − a + aα will suffice.
Arguing as in Borkar and Soumyanath (1997), one can then show that ||x − J∗||w, resp.,
||x||w serve as the ‘Liapunov functions’ for the two o.d.e.s in question (the development in
Borkar and Soumyanath (1997) is for the wi’s identically equal to one, but it takes a minor
modification of the proofs therein to accommodate more general weights). Also see Theorem
3.1(b) of Borkar 1998 for analogous arguments.

To verify that the diagonal elements of Π(t) are indeed bounded away from zero, apply the
standard theory of ‘averaging w.r.t. Markov noise’ for stochastic approximation (see, e.g.,
Section 8.4 of Kushner and Yin 1997) to conclude that the x−th diagonal element, denoted
by πx(t), will in fact be the stationary probability of x under transition probabilities of the
form

qxy = max(pxy

(
g(x, y) + J̃(y)

J̃(x)

)
, δ)

for some vector J̃ > 0, suitably normalized. (Intuitively, this is because πx(t) will be tracking
the stationary average of the indicator I(xn = i) in (7) w.r.t. the current, slowly varying
transition mechanism being used, which has the above form by virtue of (5).) It is easy to
see that under our irreducibility assumptions on the original chain, this suffices to ensure
that the above πx(t) remains bounded away from zero for all x, t (see, e.g., Lemma 2.2, p.
843, of Borkar 1998).

This allows us to invoke the aforementioned results of Borkar and Meyn (2000) to conclude
the first two claims. The third follows easily from the second by our definition of {p∗xy} and
our choice of δ. 2

Note that if we drop the requirement δ ≈ O(a), we need to replace O(a) by O(a + δ) in
the third claim above. The convergence/near-convergence of {J (n)} to J∗ ‘independent of
the underlying transition mechanism’ may appear surprising. This is because the averaging
property of stochastic approximation ensures that the algorithm sees the one step conditional
average w.r.t. the underlying law of the Markov chain. This average turns out to be exactly
the same as that under the original law after the correction due to the likelihood ratio
is accounted for. This is clear from the fact that the definition of the function F above
does not involve the {p(n)

xy }, though that of M(n + 1) does. The latter ‘noise variables’ are
‘averaged out’ by the algorithm. Hence they do not affect the limiting o.d.e. and therefore
the asymptotic limit, though they certainly affect the transients and the rate of approach to
the limit.

4 Discussion and Extensions

1. Advantages: The main advantages of the ASA algorithm are:
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• Simple implementation: The scheme has a single simple iteration with low demand
for per iterate computation and memory.

• Good performance: Our simulations show very good performance both in terms of
speed and accuracy. This is hardly surprising, as the iterations use only the single
transition likelihood ratio pxnxn+1/p

(n)
xnxn+1

at time n unlike in other approaches,
where many independent paths are generated, and for each path the likelihood
ratio is the product of the single transition likelihood ratios accumulated along
its transitions. Both computationally and analytically, single transition likelihood
ratio is a much more manageable object.

• Robustness: We found the performance of the algorithm quite robust to param-
eters such as step-size over a broad range of values, initial guesses, etc. In par-
ticular there were no ‘special choices’ involved. For example, the method of De
Boer (2001) calls for an initial change of measure under which the network is un-
stable. Our scheme does not require any such special choice. While good initial
guesses, when available, will no doubt help to reduce the initial transients (see
Section 5.2), they were not crucial for the successful working of the algorithm.

• Extensibility: Our scheme extends well to criteria other than the expected total
cost till termination. This being an important issue, we deal with it in greater
detail later.

2. Convergence rate: For stochastic approximation, the time to converge will obviously
depend on the initial condition. For decreasing step-size schemes that are synchronous
(i.e., all components are updated simultaneously), estimates for sample complexity,
i.e., number of iterates (equivalently, transitions) needed to be within a given accuracy
of the goal (and remain there) with prescribed probability, are given in Borkar (2002).
For constant step-size, observe that our iteration has the form

zn+1 = f(zn) + aξn+1,

where, for γ = 1− a + aα ∈ (0, 1),

||f(y)− f(x)||w ≤ γ||y − x||w ∀y, x, (14)

and ||ξm||w ≤ K ∀n, for some constant K > 0 (the norm || · ||w was defined in Section
3). (Take f(x) = (1 − a)x + aF (x).) Also, J∗ is the unique fixed point of f . A
simple induction using (14) shows that the n−step mean square error can be bounded
by a sum of two terms,: a term exponentially decaying in n with exponent γ and an
O(a) term independent of n. The former decay is slower for smaller values of a. The
second term arises from the ‘stationary error probability’: recall that a constant step-
size stochastic approximation does not converge to the intended limit in general, but
concentrates around it with high probability in the limit (see Theorem 2 above).

The exponential decay of the first term means that the initial bias decays exponentially.
In particular, this justifies the use of asymptotic formulae for variance for confidence
intervals. These confidence intervals may be derived from the functional central limit
theorems for suitably normalized fluctuations around the average behavior depicted
by the o.d.e. trajectory (see, e.g., Kushner and Yin 1997). The variance therein
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will be dictated by the conditional variance of the martingale terms {Mn+1}. In our
experiments, however, we avoid this complex analysis and simply generate many i.i.d.
runs of our algorithm. Each has a large and equal number of transitions. From these
one can develop confidence intervals using classical statistical methods (also see Hsieh
and Glynn 2002 for a similar approach).

3. Extensions: We can extend the foregoing quite easily to other important performance
measures. For example, suppose that the Markov chain (Xn : n ≥ 0) is irreducible
over the finite state space S. Consider the ‘expected discounted cost’

E[
∑
m

βmg(Xm, Xm+1)],

where β ∈ (0, 1) is the discount factor. One can consider the augmented Markov
chain (Xn, Yn, n ≥ 0) on S × {0, 1} with {Yn} independent of {Xn}, such that Y0 = 0,
P (Yn+1 = 1|Yn = 0) = 1 − β = 1 − P (Yn+1 = 0|Yn = 0), P (Yn+1 = 0|Yn = 1) = 1.
Replace the above by the equivalent cost

E[
T−1∑

m=0

g(Xm, Xm+1)],

where T = inf{n ≥ 0 : Yn = 1}. This is in the desired format. Another interesting
performance measure in ‘expected average cost’ setting is

γ =
∑

x∈S

π(x)
∑

y∈S

pxyg(x, y),

where π(·) is the stationary probability distribution for the Markov chain. Noting that
the process regenerates every time some prescribed state x0 ∈ S is visited, this can

be written as the ratio of G(x0)
∆
= Ex0 [

∑T−1
m=0 g(Xm, Xm+1)] and T̄ (x0)

∆
= Ex0 [T ] where

T = inf{n > 0 : Xn = x0}. Both these quantities can be estimated as above by
separate simulations. This procedure will also calculate G(x) and T̄ (x) for x 6= x0,
which seems an unnecessary overhead. However, the quantities G(x) − γT̄ (x), x ∈ S,
are useful for computing the gradient (sensitivity) of γ w.r.t. an underlying parameter
- see, e.g., Cao and Chen (1997). An important example in the average cost setting is
g(x, y) = I{x ∈ B} for a rare set B, where we estimate the steady state probability of
being in set B.

Another important possibility is to use this scheme to learn an optimal or near-optimal
policy for a Markov decision process. While this is an area rich in possibilities, we shall
very briefly outline only one such scheme by way of illustration. Replace pxy above
by pxy(u), u ∈ U, where U is a finite ‘action’ set and the problem is to choose a
good v : S → U such that the transition probabilities {pxy(v(x))} minimize a given
performance measure (say, the total expected cost till termination as above) over the
choice of all such v(·). One can mimic the ‘actor-critic’ paradigm of Konda and Borkar
(1999) to run (4) and (5) above in conjunction with a ‘search algorithm’ for the optimal
policy on a slower time scale. Konda and Borkar (1999) describe three paradigms for
such a scheme for the discounted cost, all of which can easily be adapted to total cost till
termination. We refer the reader to the above reference for details. It should be noted,
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however, that these search schemes perform the search in the larger set of randomized
policies. These amount to performing at each time an independent random experiment
to choose an element of U , according to a distribution which, however, depends on the
current state. Thus the search space is the set of probabilities on U rather than U
itself.

We note en passant that the related TD(λ) algorithm of reinforcement learning for
evaluating the value of a fixed policy can be viewed as stochastic approximation with
additional ‘approximate control variates’ included to reduce variance (see, e.g., Bert-
sekas and Tsitsiklis 1996, Randhawa and Juneja 2004). Such features could be built
into our scheme, but we did not do so because the variance was well contained even
without incurring such additional computational overhead.

5 Simulation Results

This section presents some sample simulation results to support the foregoing analysis. It
is organized as follows: To begin with, we consider the problem of estimating the probabil-
ity that the total queue length hits a large threshold N in a busy cycle of a simple open
Jackson network comprising two single-server queues (busy cycle is the time between the
two consecutive instants when an arrival to the network finds it empty). Recall that this
fits the framework used to describe the CE method in Section 2.2. In Section 5.1.1, we first
empirically analyze how the choice of step-size affects the rate of convergence of the proposed
algorithm. Then in Section 5.1.2, we compare the performance of the ASA algorithm with
the AMC and the CE algorithms for this example. We then compare the performance of the
three algorithms for an example with a larger state space corresponding to a 5-queue open
Jackson network (with a single server at each queue), in Section 5.1.3. In Section 5.1.4, we
briefly discuss the performance of the ASA algorithm vis-a-vis deterministic iterative proce-
dures such as the value iteration method. Finally, in Section 5.2 we compare the performance
of the proposed ASA algorithm and the AMC algorithm for more general performance mea-
sures by estimating the mean time for the total queue length to hit a specified threshold N
in an open Jackson network. We do not consider the CE method in this setting as in the
literature its methodology is restricted to estimating the probability of certain rare events
(while it may be feasible to extend the methodology to more general measures, we do not
attempt that here). All our experiments are performed on a Pentium-IV, 2 GHz, 512 MB
RAM machine.

5.1 Probability of Hitting a Rare Set

Consider a two queue tandem open Jackson network with a single server at each queue,
where the external arrival rates to the two queues are (λ1, λ2) = (0.04, 0.0) (in particular, the
second queue serves only the output stream of the first) and the service rates are (µ1, µ2) =
(0.48, 0.48). As mentioned earlier, we are interested in estimating the probability of the total
queue length reaching a large threshold N in a busy cycle, denoted by J∗([1, 0]), where, for
y1 + y2 < N , J∗([y1, y2]) is the probability of this event before the network empties, starting
from state corresponding to y1 customers in the first queue and y2 customers in the second
queue. This example was considered in De Boer (2001). As noted in Glasserman and Kou
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(1995) and De Boer (2001), this is a difficult network to simulate under static importance
sampling.

The simulation starts when an arrival to the network finds it empty, i.e., at state [1, 0].
We initialize J (0)([y1, y2]) = 0.1 for 0 < y1 + y2 < N , J (0)([0, 0]) = 0 and J (0)([y1, y2]) = 0
for y1 + y2 = N (recall that g([x1, x2], [y1, y2]) = 1 if x1 + x2 < N and y1 + y2 = N). All the
transition probabilities are initially set equal to the original transition probabilities. Every
time the total queue length hits N , the simulation is reset to the state [1, 0]. A large number
m of transitions are generated using the proposed algorithm. An estimate of J∗([1, 0]) at the
final transition, i.e., J (m)([1, 0]), is recorded. To develop confidence intervals of J∗([1, 0]), we
conduct many such independent simulation runs and use the i.i.d. samples of J (m)([1, 0]), as
discussed in Section 2.3.

5.1.1 Varying step-sizes

We run the proposed algorithm with different values of a for N = 25. In each run 300,000
iterations are conducted (equivalently, 300,000 transitions are generated), and 200 such in-
dependent runs are used to construct confidence intervals. The amount 300,000 was chosen
because visually it appears that the bias vanishes by 300,000 iterations for a ≥ 0.2. (A
more sophisticated criterion is to stop when a suitable average of the estimators stabilizes
in the sense that it does not vary by more than ε = 1% over a large number n of transitions.
Empirically we observed that the stopping time so generated for n = 1, 000 was smaller than
300,000 for a ≥ 0.2.) We chose 200 independent runs so that the relative confidence width
becomes stable. It was observed that the relative confidence interval width is extremely
small but variable and hence more than 200 samples may be needed to estimate it accu-
rately. Nonetheless its small value indicates that pretty much all samples are very close to
the true value.

We also run the algorithm with decreasing step-sizes (an : n ≥ 0). The rationale for
selecting step-sizes in this manner is well known: Initially step-sizes should be large so that
the bias is removed quickly. Thereafter, step-sizes should be reduced so that the estimate
becomes less variable.

The step-sizes were chosen as follows: an = c for n ≤ 100, 000 and an = c ∗ (100, 000/n)3/4

for n > 100, 000 for c = 0.9 and 0.98. The rationale for selecting an proportional to 1/n3/4

rather than the customary rate 1/n in Monte-Carlo simulations is that in stochastic approx-
imation settings (see, e.g., Singh and Dayan 1998, Randhawa and Juneja 2004), typically
the step-sizes proportional to 1/n have no special advantage over other reasonable choices.
Randhawa and Juneja (2004), found this to be true through extensive experimentation with
step-sizes proportional to 1/nα for α ∈ (0.6, 1) in a similar problem setting. In our exper-
iments step-sizes c/n0.6, c/n0.75 and c/n gave almost identical confidence intervals for the
values of c considered.

The results are displayed in Table 1. As may be expected, for small a = 0.1, the bias
has not vanished in 300,000 iterations. A large value of a (e.g., a = 0.98), on the other
hand, may give a bad estimate due to large variance. The algorithm is remarkably stable for
all intermediate values of a. The algorithm with decreasing step-sizes performs somewhat
better than the corresponding algorithm with fixed step-sizes.

The plot of estimated J∗([1, 0]) as a function of the number of transitions for one simulation
run having 800,000 transitions is given in Fig. 1. From the figure, we see that except when
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a is close to 1 or it is close to 0, (e.g., a = 0.98 and 0.1, respectively), the simulation output
maybe expected to quickly converge to the correct value.

Note from Table 1 and Fig. 1 that for large values of a, i.e., a = 0.98 and a = ‘0.98 and
decreasing’ for initial transitions, typically the iterates J (k)([1, 0]) underestimate J∗([1, 0])
while occasionally a spike in the output leads to an overestimation. A heuristic reasoning
for this is easily seen. For a close to 1, a very small weight of (1 − a) ≈ 0 is assigned
to the previous iterate, hence the update step in (4) is governed primarily by the second
term on the right hand side. This term may typically be small, as from a state xn, a state
xn+1 is selected frequently if p(n)

xnxn+1
is large. In this case, the ratio

pxnxn+1

p
(n)
xnxn+1

assigns a low

weight to the output and hence J (n)(xn) will be underestimated. Rarely, a correction event
for which p(n)

xnxn+1
is small is observed leading to a spike in the value of the corresponding

J (n)(xn). In the case where step-sizes eventually start decreasing, the bias underestimation
introduced in the constant step-size phase may take a long time to vanish. This explains the
underestimation for ‘0.98 and decreasing’ case in Table 1.

It is also interesting to note that for larger values of a, at least for the problem of estimating
rare event probabilities, the error estimate O(a) of Theorem 2 above is of little value. This
is because the quantity to be estimated is typically of much smaller magnitude. This in
fact works in our favor: The theoretical analysis of Theorem 2 is an application of general
stochastic approximation theory where usually small a are warranted. Despite the fact that
this error estimate does not mean much for larger a, our empirical evidence of excellent
convergence properties of the algorithm for larger a only shows that the error estimate has
been very conservative. Larger a implies faster convergence (lower bias) in view of the
interpretation of a as a time step. Thus the empirical observation that this is permissible
without compromising variance too much is an added advantage of our scheme.

a Estimator (×1025) a Estimator (×1025)
0.1 4.15 ±0.025 0.2 2.87 ±1.72× 10−5

0.5 2.87 ±1.72× 10−5 0.7 2.87 ±5.74× 10−5

0.9 2.87 ±0.017 0.98 2.69 ±1.4
0.9 and decreasing 2.87 ±5.17× 10−3 0.98 and decreasing 2.13 ±0.11

Table 1: Estimators (×1025) and 95% confidence intervals for different choices of step-sizes.
The exact value of the probability, 2.87 × 10−25, was determined using analytical methods
in De Boer 2001.

5.1.2 Performance comparison between ASA, AMC and CE algorithms on a
small network

De Boer et al. (2000) and De Boer (2001) propose various elegant modifications to their
basic state dependent cross entropy algorithm that considerably improve the performance
over the basic algorithm. These allow them to solve Jackson networks with over a million
states. However, in this section we restrict comparison of ASA algorithm to the basic CE
algorithm and the AMC algorithm for the following reasons:
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1. The basic algorithms AMC, CE and ASA represent three substantially different ap-
proaches to adaptive simulation. Thus their comparison is insightful in identifying
their relative advantages for various classes / sizes of problems.

2. The modifications suggested in the above references for the CE algorithm may, after
suitable adjustments, be used in the ASA and the AMC algorithms as well: Performing
a fair comparison that involves such modifications and further modifications such as
function approximations (discussed in Section 6) is an enormous task that may be an
object of future study.

3. The modifications proposed in the above references rely critically on the fact that
queues in open Jackson networks behave like reflected random walks. Thus consider
for example the set of states where a subset of queues is non-empty in a network.
For all these states, the probabilistic jump structure is independent of the state. This
allows for clever state aggregation techniques for updating the change of measure in
an iteration of the CE method as proposed in the above references. However, for more
general Markov chains, e.g., queueing networks where arrival and service rates are
state dependent, such aggregation techniques may be less useful. The ASA and the
AMC algorithms, however, do not appear to depend critically on such uniformity in
the probabilistic structure of the Markov chain.

Similarly, Kollman et al. (1999) suggest some modifications to the basic AMC algorithm
that include using ‘path information’. This involves getting samples for cost till termination
for all the states in I visited along a generated path. Note that these samples are no longer
independent. Computationally this may be more efficient then generating independent paths
from each state in I. They also suggest a modification whereby the estimate of the value
function after iteration n + 1 is taken to be the weighted average of the estimate after
iteration n and the estimate generated at iteration n + 1 (in the basic method, only the
latter is considered). Along with these they also suggest other useful ideas. However, to
maintain simplicity and focus, we implement only their basic algorithm.

To begin with, we assume that the initial distribution for all three algorithms is the original
distribution of the network. Later, this is relaxed for the AMC and the CE algorithms. We
compare the three algorithms for N = 5 and 12.

For implementing the AMC algorithm, we further need to decide the number of indepen-
dent samples l to generate from each state at every iteration. We do this by trying values
l = 20, 50, 100, 200, · · · , till the best amongst these is identified. Unless reported otherwise,
we use the best value. The minimum value of 20 is chosen so that reliable confidence intervals
may be constructed. Every iteration starts by generating l independent samples from the
state [1, 0]. We test to check if the generated 95% confidence interval length is within 0.1%
of the estimated value, in which case the simulation terminates. The small value of 0.1% is
chosen to avoid termination at incorrect estimated values. If this stopping criterion is not
met, then we proceed to generate independent samples starting from each of the remaining
interior states in order to complete the iteration.

For N = 5, we selected l = 20, and 8 iterations were conducted before the stopping
condition was met. For N = 12, we note that for l = 20, 100 and 1, 000, the stopping criteria
was not met even after two hours. The reason for this is that in the first iteration under the
original measure, almost all samples generated from states in I hit state [0, 0] before hitting
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the prescribed threshold (recall that the probability of the latter equals 1.47× 10−11). After
the first iteration, the probability of hitting the state [0, 0] from any state in I becomes zero
(since we update J (n)([0, 0]) to zero for all n ≥ 1, and this is used in updating the transition
probabilities). Thus from the second iteration onwards, from any starting state a single
replication will terminate only if the threshold is reached. In our simulation, we note that
in the second iteration, even the first replication starting from state [1, 0] did not hit the
prescribed threshold even once in two hours of computation time (after 8.9×109 transitions).

We implement the state dependent version of the CE algorithm described in Section 2.2
(see De Boer 2001, Chapter 8. As noted in this reference, the state independent CE method
fails miserably for the example considered. The reference also shows examples where the state
independent CE method performs remarkably well.) Again, we stop when after an iteration
the generated 95% confidence interval is within 0.1% of the actual value. For N = 5, we use
104 replications in every iteration of the CE algorithm. With 103 replications, the algorithm
stopped at a wrong estimated value of the probability (its estimate was 1.7 × 10−4, while
the actual value is 2.17 × 10−4), while for 105 and 106 replications, the time taken to meet
the stopping criterion was larger. For N = 12, greater than 1011 replications are needed on
an average to observe the desired rare event under the original probability measure, while it
took two hours to generate about 3.85× 108 replications and no such event was observed.

The ASA algorithm is implemented with a = 0.5. Twenty independent runs are conducted
to construct confidence intervals. The number of transitions are selected so that the bias
becomes negligible. Table 2 reports the results under the three approaches. Note that the
ASA algorithm converges very quickly even for N = 12.

N ASA Method AMC Method CE Method
5 Prob. est. ×104 2.17± 1.09× 10−6 2.17± 4.34× 10−4 2.17± 9.8× 10−4

Transitions 105 2.00× 105 4.6× 105

CPU (in sec.) 0.10 0.15 0.61

12 Prob. est. ×1011 1.47± 2.79× 10−4 no convergence no convergence
Transitions 5× 105 9.7× 109 1.56× 109

CPU (in sec.) 0.47 7, 200 7, 200

Table 2: Comparison of three approaches when initial probability measure is the original
one for all three methods. The range displayed along with the point estimator corresponds
to 95% confidence interval. The exact value of the probability is numerically determined in
De Boer (2001). For N = 5 and 12, the respective values are: 2.17× 10−4 and 1.47× 10−11.

As mentioned in De Boer (2001), for successful implementation, the CE algorithm typically
requires an initial change of measure where the network is unstable. The same may be
expected to be true for the AMC algorithm. Hence we also perform comparisons wherein
the CE algorithm and the AMC algorithm begin simulation with the change of measure
proposed in De Boer (2001), under which the network is unstable. Under this measure,
the arrival rate to the first queue equals 0.522 and the service rates to the two queues are
respectively (0.412, 0.066). As recommended in De Boer (2001), we use 104 replications in
every iteration of their algorithm.

Table 3 shows the comparison between the three methods for N = 12, 50, 100 and 150.
In the AMC algorithm, the number of samples generated per state per iteration and the
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N ASA Method AMC Method CE Method
12 Prob. est. ×1011 1.47± 2.79× 10−4 1.47± 2.06× 10−4 1.47± 2.5× 10−4

Transitions 5× 105 9.9× 104 6.2× 105

CPU (in sec.) 0.47 0.08 1.06

50 Prob. est. ×1052 6.03± 4.94× 10−8 6.03± 2.29× 10−3 3.11± 8.7× 10−4

Transitions 4× 107 1.35× 107 7× 108

CPU (in sec.) 35.9 9.47 3, 600

100 Prob. est. ×10105 1.33± 6.5× 10−9 1.33± 5.59× 10−4 no convergence
Transitions 2× 108 3.8× 108 4.6× 108

CPU (in sec.) 193 306 7, 200

150 Prob. est. ×10159 2.19± 5.9× 10−4 2.19± 1.75× 10−3 no convergence
Transitions 6× 108 3.1× 109 3.4× 108

CPU (in sec.) 612 2, 825 7, 200

Table 3: Comparison of three approaches when initial probability measure is the original
one for the ASA algorithm while it is the unstable one for the AMC and the CE algorithm.
The range displayed along with the point estimator corresponds to 95% confidence interval.
The exact value of the probability is numerically determined in De Boer (2001). For N =
12, 50, 100 and 150, the respective values are: 1.47× 10−11, 6.03× 10−52, 1.33× 10−105 and
2.19× 10−159.

number of iterations till the convergence criterion is met equal (20,7),(20, 14) (100, 9) and
(200,12), for N = 12, 50, 100 and 150, respectively. The CE method required 3 iterations for
buffer size 12. For N = 50, about 800 iterations were conducted, although the result did not
converge to the correct value.

It can be seen that while the AMC algorithm performs better for smaller N , the ASA
algorithm remains the most viable method for large N . Note that the ASA algorithm may
also be further improved by selecting initial value functions carefully (e.g., by conducting
an iteration of the AMC algorithm under an unstable measure); however, in such attempts
the simplicity of implementation of the proposed method is lost. Also note that the average
computer time required per transition is the highest for the CE method. This is due to the
large computational effort needed in the CE method to update the transition probabilities
after every iteration.

5.1.3 Performance comparison between ASA, AMC and CE algorithms on a
larger network

We now consider the probability of the total queue length reaching a threshold N in a busy
cycle of a larger 5 queue open Jackson network with single servers at each queue. To aid in
validating the results, we consider the network considered in Section 8.3.5 of De Boer (2001).
This network has an external arrival rate of 3 to queue 1. Other queues do not have external
arrivals. The service rates (µ1, . . . , µ5) equal (40, 20, 50, 50, 60). From the first queue with
probability 1/2 a customer departs to queue 2 and with probability 1/2 it departs to queue
3. From queue 2 with probability 1/2 a customer departs to queue 5 and with probability
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Buffer ASA Method AMC Method CE Method
Size
5 Prob. est. ×103 5.67± 1.42× 10−4 5.67± 1.71× 10−3 5.67± 2.27× 10−3

Transitions 4× 106 1.7× 106 5.9× 106

CPU (in sec.) 10.5 3.6 1, 106
10 Prob. est. ×107 6.14± 6.14× 10−5 no convergence no convergence

Transitions 2× 108 1.8× 1010 1.9× 107

CPU (in sec.) 552 36, 000 36, 000
20 Prob. est. ×1016 7.79± 1.17× 10−3 no convergence no convergence

Transitions 2× 109 1.4× 1010 8.6× 106

CPU (in sec.) 6, 593 36, 000 36, 000

Table 4: Comparison of three approaches for a large network when initial probability measure
is the original one for all three methods. The range displayed along with the point estimator
corresponds to 95% confidence interval.

1/2 it returns to queue 1. From queue 3 with probability 1 the customer goes to queue 4
and from queue 4 with probability 1 it goes to queue 5. From queue 5 the customer leaves
the system with probability 1/2 and returns to queue 3 with probability 1/2. Under these
parameters each queue has a traffic intensity equal to 0.1. Figure 2 graphically illustrates
this network. As noted by De Boer (2001), state-independent methods do not work well
with this problem.

Again we compare the three algorithms for this example and we set the initial distribution
to the original distribution in the three cases. We compare the algorithms for the total queue
length threshold N = 5, 10 and 20. It is easy to see that the number of states so that the
total network population equals j in a network with q queues is given by (j+q−1)!

j!(q−1)!
. Using

this, we compute that the Markov chain has 127, 2003 and 42, 505 states, respectively for
N = 5, 10 and 20 (considering the set of overflow states as a single state). Table 4 reports
the results under the three approaches.

The methodology for the three approaches is similar to that described in Section 5.1.2.
Under the AMC approach, for N = 5, we selected l = 50, and 11 iterations were conducted
before the stopping condition is met (again these were the best values compared to those
obtained with l = 20 and 100). For N = 10 and 20 for l = 20, 100 and 1, 000, the stop-
ping criteria was not met even after 10 hours. The reasons were similar to those given in
Section 5.1.2 for a smaller example.

As in Section 5.1.2, we implement the state dependent version of the CE algorithm for this
example as well. For N = 5, we use 105 replications per iteration. Again, this performed
better than the cases where 104 and 106 replications were used. Again for N = 10 and 20
no convergence was seen in 10 hours for reasons similar to those given in Section 5.1.2.

For ASA method we generate 20 independent runs. The step a is set to 0.5. Note that for
N = 20 the resulting estimate of the probability and the 95% confidence interval equalled
7.79 × 10−16 ± 1.17 × 10−3%. This is within the confidence interval reported by De Boer
(2001), where the estimate was less precise because the confidence width was wider.

De Boer (2001) also considers N equal to 50 and 100 and uses various sophisticated
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techniques to handle that situation. However, for N = 50 the |I| is close to 3.2 million;
hence the storage requirements make it difficult to implement the proposed methodology in
its present form (see the discussion in Section 6).

5.1.4 Performance comparison between ASA algorithm and deterministic nu-
merical methods

A well known ‘rule of thumb’ is that the Monte-Carlo based methods provide quicker ball
park estimates compared to the deterministic methods when the state space is large, and
therefore in such settings, are a viable alternative. In Ahamed, Borkar and Juneja (2005), an
online companion to this paper, we illustrate the validity of this rule for ASA algorithm vis-
a-vis the value iteration method (a deterministic iterative procedure to solve the ‘fixed point’
linear equations satisfied by the value function J∗, see Bertsekas and Tsitsitklis 1996) through
an example. The results there suggest that the value iteration method performs better if
greater accuracy is required, while the ASA algorithm gives quicker ball-park estimates.
Also, as the state-space increases, the ASA algorithm improves in comparison to the value
iteration method.

Note that the deterministic methods such as value iteration, converge to the correct value
at an exponential rate in terms of iterates required (see Golub and Van Loan 1996 for more
advanced deterministic methods such as the Successive Over-Relaxation method). Never-
theless, the convergence can be slow in practice since each iteration requires O(d2) compu-
tations (recall that d = |S|, also, without loss of generality we may take |T | = 1 so that
|I| = d − 1). This O(d2) computation corresponds to the number of positive entries in the
transition matrix and may be reduced when the transition matrix of the Markov chain is
sparse (for example, in Jackson networks the transition matrix of the associated Markov
chain has O(dq2) positive entries where q denotes the number of queues in the network, and
thus computations per iteration are O(dq2)). On the other hand, the ASA algorithm requires
O(d) operations per transition (this reduces to O(q2) for Jackson networks). However, note
that under value iteration the value function corresponding to each state is updated while
under the ASA algorithm the value function corresponding to a single state (from which the
transition is made) is updated. Thus, the number of transitions required under the ASA
algorithm may be large; however, their dependence upon d cannot be captured in any trans-
parent way. Note that both the AMC algorithm and the state-dependent CE algorithm also
require O(d) operations per transition. In these cases as well, the dependence of number of
transitions needed on d is not straightforward.

Also note that for general Markov chains, O(d2) memory is needed to store the original
transition matrix. For specialized Markov chains such as those associated with Jackson
networks, the original probability transition matrix need not be stored. In deterministic
numerical methods such as value iteration, and in the ASA and the AMC method, O(d)
memory is required to store the estimate of value function. In the ASA and the AMC
method, the importance sampling transition probabilities can then be generated using this
estimate. However, in these methods, this may lead to some degradation in performance vis-
a-vis storing importance sampling probabilities (that takes O(d2) storage), as in the former
case, O(d) computational effort is needed to generate the importance sampling transition
probabilities at every transition, while in the latter case, these may be generated in O(1)
computations (as discussed for the ASA method in Section 2.3; for the AMC method these
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probabilities are computed only once in each iteration at its beginning). In the state de-
pendent CE method, O(d2) memory is required to store the importance sampling transition
probabilities.

Also note that Kuruganti and Strickland (1996) suggest running a few iterations of a
deterministic numerical method such as value iteration to estimate the value function and
then using the associated estimate of the zero variance measure as the static importance
sampling distribution to further refine estimates of value function via simulation.

5.2 Mean Time to Hit a Rare Set

Buffer ASA Method AMC Method
Size
3 mttf 4.72± 1.8× 10−3 4.72± 2.12× 10−3

Transitions 1× 108 2.2× 108

CPU (in sec.) 275 309
5 mttf 99.05± 1.48× 10−2 no convergence

Transitions 2× 108 1.1× 1010

CPU (in sec.) 548 36, 000
6 mttf 540.01± 5.4× 10−2 no convergence

Transitions 2× 109 1.8× 1010

CPU (in sec.) 5, 880 36, 000
7 mttf 3199.4± 3.2× 10−1 no convergence

Transitions 2× 1010 4.4× 1010

CPU (in sec.) 54, 660 72, 000

Table 5: Comparison of ASA and AMC methods in estimating the mean time to hit a rare
set for the 5-queue open Jackson network example. The range displayed along with the point
estimator corresponds to 95% confidence interval.

In the previous section we used the three methods to estimate certain probabilities of
rare events. We now apply the ASA and the AMC method to estimate a more general
performance measure.

Again consider the five queue network example described in Section 5.1.3. For this ex-
ample, we now consider the problem of determining the mean time to hit the set of states
corresponding to the total queue length at the five queues equal to N for N = 3, 5, 6 and
7 (call these set of states RN ; let A denote the set containing a single ‘all queues empty’
state). We restrict ourselves to small values of N as the computational time requirement
grows very fast with N (we give a heuristic explanation for this later). In this setting, g(x, y)
denotes the mean time spent in state x before jumping to state y. This is well known to be
independent of y and is given by:

g(x, y) =
1

∑5
i=1(λi + µiI(xi > 0))

,

where x = (xi : i ≤ 5).
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In the AMC method for N = 3 the best performance was obtained for l = 50. Here 9
iterations were conducted before the stopping condition (same as in the previous examples)
was met. For N = 5, 6 and 7, we tried l = 50, 100 and 200. The estimator did not meet the
stopping criteria even in ten hours for N = 5, 6 and for twenty hours for N = 7.

For the ASA method, we conduct 20 independent runs for each value of N . The step-size
a is again set to 0.5. The initial value J0(x) for all x not in RN is kept at 100 (we also
tried initial values set to 1, 1000 and 10, 000 for each x not in RN . The results were quite
insensitive to these values). J0(x) is fixed at zero for states x ∈ RN . We start our algorithm
with all queues empty. Every time the total queue length equals N , the simulation is reset to
A. The results are shown in Table 5. While the ASA method performs better than the AMC
method, especially for N ≥ 5, its performance appears to deteriorate quickly with increasing
N . This differs from its behavior in estimating the probability of hitting RN before hitting
A, shown in Table 4, where the corresponding probability for N = 20 was estimated in a
reasonable time.

Note that an alternate method to estimate mean time to hit RN exists that involves
efficient estimation of the probability of hitting RN before hitting A. To see this, let TN

denote the time to hit the set RN starting from an empty network. Let T0 denote the length
of the busy cycle of the queuing network, i.e., starting from an empty network, time for it
to re-empty after an arrival takes place. It is well known that (see, e.g., Heidelberger 1995)

ETN =
E min(T0, TN)

P (TN < T0)
. (15)

Using this ratio representation we validate our estimate for N = 5 in Table 5. Note
that E min(T0, TN) may be easily estimated via naive simulation, while the ASA method
may be used to estimate P (TN < T0). As reported in Table 5, the direct application of
the ASA method to estimate ET5 provides an approximate 95% confidence interval 99.05±
1.48× 10−2 in 548 seconds. We estimate E min(T0, T5) using naive simulation by generating
106 independent samples of min(T0, T5). This took 21 seconds. The approximate 97.5%
confidence interval of E min(T0, T5) equals 0.5617 ± 4.11 × 10−4. From Table 4 it is easy
to infer that that the approximate 97.5% confidence interval for P (T5 < T0) equals 5.67 ×
10−3 ± 1.62 × 10−7, and this is estimated in 10.5 seconds. Thus, the point estimator of
ET5 from the ratio representation equals 99.065 and is within acceptable error limit of the
estimator from the direct application of the ASA method. To see that the estimator from the
ratio representation does not have very high variability, note that a conservative confidence
interval for it may be easily developed using the following observation: Consider independent
random variables X and Y and suppose that there exist positive constants α, a, ε, b, δ such
that a > ε, b > δ, P (X ∈ (a± ε)) = α and P (Y ∈ (b± δ)) = α. Then

P (
X

Y
∈ (

a− ε

b + δ
,
a + ε

b− δ
)) ≥ α2.

In our settings, by selecting α = 0.975, and noting that α2 ≈ 0.95, an approximate and
conservative confidence interval for ET5 using the ratio representation equals (98.99, 99.14).
Asymptotically more accurate confidence interval may be developed using the techniques
analogous to those in the regenerative settings, where such ratio representations arise (see,
e.g., Glynn and Iglehart 1993). However, we avoid this as some adjustments to the standard
analysis may be needed in our settings (to account for small value of the denominator and

24



the different number of samples used in estimating the numerator and the denominator).
These experiments suggest that for larger values of N , e.g., N = 20, under the ASA method,
the ratio representation is better suited for efficient estimation of ETN vis-a-vis its direct
estimation.

A heuristic justification for the better performance of the ASA method in learning P (TN <
T0) vis-a-vis its directly learning ETN is as follows: It is reasonable to suppose that visits
to RN provide useful information for updating J , the estimates of value functions, towards
their true values, J∗. Recall that in estimating P (TN < T0), g(x, y) = 0 except when
y ∈ RN , in which case g(x, y) = 1. Also note that for x, y ∈ I, if y ≥ x componentwise,
then J∗(y) ≥ J∗(x). In view of this and the representation of the transition probabilities
associated with the zero variance estimator in (3), it is reasonable to expect that as the
estimates J improve, the probability of hitting the rare set in a busy cycle may increase,
leading to faster learning of useful information. Now consider the case of direct estimation
of ETN . Here, g(x, y) is independent of y, and for x, y ∈ I, if y ≥ x componentwise,
then J∗(y) ≤ J∗(x). Thus, it is reasonable to expect that as the estimates J improve, the
probability of hitting the rare set in a busy cycle may reduce, leading to slower learning of
useful information.

Empirically, we illustrate this via the following experiment. We run the ASA method for
the two separate cases, one corresponding to learning P (TN < T0) (as in Section 5.1.3) and
the other to directly learning ETN (as in this section) for a sufficiently long time so that the
estimated J in the two cases are close to the corresponding J∗ (106 transitions were generated
in the first case and 108 transitions in the second). Then, in both the cases we count the
number of transitions to reach RN starting from A. We consider N = 5. In the case of
learning P (TN < T0), the approximate 95% confidence interval for the expected number of
transitions to hit RN starting from A, from 1, 000 observations, equalled 28.38 ± 1.06 (this
confidence interval is valid under the assumption that the observations are i.i.d. This would
be true if the zero variance transition probabilities were used to generate samples; in our case
this is approximately correct. However, this issue is minor relative to the point considered).
In the case of directly learning ETN , the approximate 95% confidence interval, from 1, 000
observations, equalled 1.36 × 107 ± 8.43 × 105 (enormously larger than in the former case).
Interestingly, under the naive probability measure, the approximate 95% confidence interval,
from 1, 000 observations, equalled 2, 384± 146.

As the results of the AMC algorithm illustrate, this drawback may be valid for all schemes
that attempt to learn and use the zero-variance transition probabilities in simulation. One
approach to ameliorate this drawback may be to use the ratio representation based on re-
generative theory, as in (15), to develop an estimate. Alternatively, one may consider using
a change of measure that emphasizes the paths to the rare event and keep this measure fixed
as the simulation continues to learn the value function at every transition (as in Randhawa
and Juneja 2004). However, further research is needed to analyze this drawback carefully
and come up with a good solution.

6 Conclusion

In this paper, we presented an easily implementable and efficient adaptive importance sam-
pling technique for estimating common performance measures associated with finite state
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Markov chains. A potential drawback of our approach is that it requires computation and
storage of the estimated value function of each state generated via simulation. While this is
an inevitable feature of any adaptive scheme as pointed out earlier, it could require enormous
memory and computational effort when the state space is large with hundreds of thousands
of states. One way to deal with this problem may be to use function approximation tech-
niques to approximate the value function (see, e.g., Bertsekas and Tsitsiklis 1996). This
issue will be further explored by the authors in a separate paper.
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Figure 2: A five-queue open Jackson network

28


