2,634 research outputs found

    JSCC-Cast: A Joint Source Channel Coding Video Encoding and Transmission System with Limited Digital Metadata

    Get PDF
    [Abstract] This work considers the design and practical implementation of JSCC-Cast, a comprehensive analog video encoding and transmission system requiring a reduced amount of digital metadata. Suitable applications for JSCC-Cast are multicast transmissions over time-varying channels and Internet of Things wireless connectivity of end devices having severe constraints on their computational capabilities. The proposed system exhibits a similar image quality compared to existing analog and hybrid encoding alternatives such as Softcast. Its design is based on the use of linear transforms that exploit the spatial and temporal redundancy and the analog encoding of the transformed coefficients with different protection levels depending on their relevance. JSCC-Cast is compared to Softcast, which is considered the benchmark for analog and hybrid video coding, and with an all-digital H.265-based encoder. The results show that, depending on the scenario and considering image quality metrics such as the structural similarity index measure, the peak signal-to-noise ratio, and the perceived quality of the video, JSCC-Cast exhibits a performance close to that of Softcast but with less metadata and not requiring a feedback channel in order to track channel variations. Moreover, in some circumstances, the JSCC-Cast obtains a perceived quality for the frames comparable to those displayed by the digital one.This work has been funded by the Xunta de Galicia (by grant ED431C 2020/15 and grant ED431G 2019/01 to support the Centro de Investigación de Galicia “CITIC”), the Agencia Estatal de Investigación of Spain (by grants RED2018-102668-T and PID2019-104958RB-C42), and ERDF funds of the EU (FEDER Galicia 2014–2020 and AEI/FEDER Programs, UE)Xunta de Galicia; ED431C 2020/15Xunta de Galicia; ED431G 2019/0

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed
    • …
    corecore