14,610 research outputs found

    Prediction in Photovoltaic Power by Neural Networks

    Get PDF
    The ability to forecast the power produced by renewable energy plants in the short and middle term is a key issue to allow a high-level penetration of the distributed generation into the grid infrastructure. Forecasting energy production is mandatory for dispatching and distribution issues, at the transmission system operator level, as well as the electrical distributor and power system operator levels. In this paper, we present three techniques based on neural and fuzzy neural networks, namely the radial basis function, the adaptive neuro-fuzzy inference system and the higher-order neuro-fuzzy inference system, which are well suited to predict data sequences stemming from real-world applications. The preliminary results concerning the prediction of the power generated by a large-scale photovoltaic plant in Italy confirm the reliability and accuracy of the proposed approaches

    Development of Neurofuzzy Architectures for Electricity Price Forecasting

    Get PDF
    In 20th century, many countries have liberalized their electricity market. This power markets liberalization has directed generation companies as well as wholesale buyers to undertake a greater intense risk exposure compared to the old centralized framework. In this framework, electricity price prediction has become crucial for any market player in their decision‐making process as well as strategic planning. In this study, a prototype asymmetric‐based neuro‐fuzzy network (AGFINN) architecture has been implemented for short‐term electricity prices forecasting for ISO New England market. AGFINN framework has been designed through two different defuzzification schemes. Fuzzy clustering has been explored as an initial step for defining the fuzzy rules while an asymmetric Gaussian membership function has been utilized in the fuzzification part of the model. Results related to the minimum and maximum electricity prices for ISO New England, emphasize the superiority of the proposed model over well‐established learning‐based models

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Get PDF
    Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of the atmosphere that encompasses nearby atmospheric pressure, temperature, roughness, and obstacles. As an effective method of high-dimensional feature extraction, deep neural network can theoretically deal with arbitrary nonlinear transformation through proper structural design, such as adding noise to outputs, evolutionary learning used to optimize hidden layer weights, optimize the objective function so as to save information that can improve the output accuracy while filter out the irrelevant or less affected information for forecasting. The establishment of high-precision wind speed and wind power forecasting models is always a challenge due to the randomness, instantaneity and seasonal characteristics

    Forecasting seasonality in prices of potatoes and onions: challenge between geostatistical models, neuro fuzzy approach and Winter method

    Get PDF
    This paper, we studied the ability of geostatistical models (ordinary kriging (OK) and Inverse distance weighting (IDW)), adaptive neuro-fuzzy inference system (ANFIS) and Winter method for prediction of seasonality in prices of potatoes and onions in Iran over the seasonal period 1986_2001. Results show that the best estimators in order are winter method, ANFIS and geostatistical methods. The results indicate that Winter and ANFIS had powerful results for prediction the prices while geostatistical models were not useful in this respect.Price; Geostatistical model; Kiriging; Inverse distance weighting; Winter’s method; Adaptive neuro fuzzy inference system; Potatoes; Onions; Iran

    Forecasting seasonality in prices of potatoes and onions: challenge between geostatistical models, neuro fuzzy approach and Winter method

    Get PDF
    Price, Geostatistical model, Kiriging, Inverse distance weighting, Winter’s method, Adaptive neuro fuzzy inference system, Potatoes, Onions, Iran, Crop Production/Industries, Demand and Price Analysis,

    Forecasting Unemployment Rate Using a Neural Network with Fuzzy Inference System

    Get PDF
    Greece is a low-productivity economy with an ineffective welfare state, relying almost exclusively on low wages and social transfers. Failure to come to terms with this reality hampers both the appropriateness of EU recommendations and the Greek government's capacity to deal with unemployment. Rather than finding a job in a family business or through relationship contacts, young people stay unemployed. Nor can people move back to their village of origin so easily. The underground economy, and the mass of small companies which characterize the Greek economy are booming, on paper. One in three members of the workforce are "self-employed", compared to one in seven in the EU as a whole. (International Viewpoint) An unemployed person in Greece is 2,15 times more likely to suffer poverty than a person in employment. Yet in Greece there are perhaps even more influential factors in determining increased risk of poverty. Thus while unemployment is a crucial factor in the risk of poverty, it is neither the only nor the most significant factor. The paper presents a new technique in the field of unemployment modeling in order to forecast unemployment index. Techniques from the Artificial Neural Networks and from fuzzy logic have been combined to generate a neuro-fuzzy model. The input is a time series. Classical statistics measures are calculated in order to asses the model performance. Further the results are compared with an ARMA and an AR model.forecasting, neural network, unemployment

    Modeling Financial Time Series with Artificial Neural Networks

    Full text link
    Financial time series convey the decisions and actions of a population of human actors over time. Econometric and regressive models have been developed in the past decades for analyzing these time series. More recently, biologically inspired artificial neural network models have been shown to overcome some of the main challenges of traditional techniques by better exploiting the non-linear, non-stationary, and oscillatory nature of noisy, chaotic human interactions. This review paper explores the options, benefits, and weaknesses of the various forms of artificial neural networks as compared with regression techniques in the field of financial time series analysis.CELEST, a National Science Foundation Science of Learning Center (SBE-0354378); SyNAPSE program of the Defense Advanced Research Project Agency (HR001109-03-0001
    • 

    corecore