690 research outputs found

    Developing improved algorithms for detection and analysis of skin cancer

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Malignant melanoma is one of the deadliest forms of skin cancer and number of cases showed rapid increase in Europe, America, and Australia over the last few decades. Australia has one of the highest rates of skin cancer in the world, at nearly four times the rates in Canada, the US and the UK. Cancer treatment costs constitute more 7.2% of health system costs. However, a recovery rate of around 95% can be achieved if melanoma is detected at an early stage. Early diagnosis is obviously dependent upon accurate assessment by a medical practitioner. The variations of diagnosis are sufficiency large and there is a lack of detail of the test methods. This thesis investigates the methods for automated analysis of skin images to develop improved algorithms and to extend the functionality of the existing methods used in various stages of the automated diagnostic system. This in the long run can provide an alternative basis for researchers to experiment new and existing methodologies for skin cancer detection and diagnosis to help the medical practitioners. The objective is to have a detailed investigation for the requirements of automated skin cancer diagnostic systems, improve and develop relevant segmentation, feature selection and classification methods to deal with complex structures present in both dermoscopic/digital images and histopathological images. During the course of this thesis, several algorithms were developed. These algorithms were used in skin cancer diagnosis studies and some of them can also be applied in wider machine learning areas. The most important contributions of this thesis can be summarized as below: - Developing new segmentation algorithms designed specifically for skin cancer images including digital images of lesions and histopathalogical images with attention to their respective properties. The proposed algorithm uses a two-stage approach. Initially coarse segmentation of lesion area is done based on histogram analysis based orientation sensitive fuzzy C Mean clustering algorithm. The result of stage 1 is used for the initialization of a level set based algorithm developed for detecting finer differentiating details. The proposed algorithms achieved true detection rate of around 93% for external skin lesion images and around 88% for histopathological images. - Developing adaptive differential evolution based feature selection and parameter optimization algorithm. The proposed method is aimed to come up with an efficient approach to provide good accuracy for the skin cancer detection, while taking care of number of features and parameter tuning of feature selection and classification algorithm, as they all play important role in the overall analysis phase. The proposed method was also tested on 10 standard datasets for different kind of cancers and results shows improved performance for all the datasets compared to various state-of the art methods. - Proposing a parallelized knowledge based learning model which can make better use of the differentiating features along with increasing the generalization capability of the classification phase using advised support vector machine. Two classification algorithms were also developed for skin cancer data analysis, which can make use of both labelled and unlabelled data for training. First one is based on semi advised support vector machine. While the second one based on Deep Learning approach. The method of integrating the results of these two methods is also proposed. The experimental analysis showed very promising results for the appropriate diagnosis of melanoma. The classification accuracy achieved with the help of proposed algorithms was around 95% for external skin lesion classification and around 92 % for histopathalogical image analysis. Skin cancer dataset used in this thesis is obtained mainly from Sydney Melanoma Diagnostic Centre, Royal Prince Alfred Hospital. While for comparative analysis and benchmarking of the few algorithms some standard online cancer datasets were also used. Obtained result shows a good performance in segmentation and classification and can form the basis of more advanced computer aided diagnostic systems. While in future, the developed algorithms can also be extended for other kind of image analysis applications

    Weed/Plant Classification Using Evolutionary Optimised Ensemble Based On Local Binary Patterns

    Get PDF
    This thesis presents a novel pixel-level weed classification through rotation-invariant uniform local binary pattern (LBP) features for precision weed control. Based on two-level optimisation structure; First, Genetic Algorithm (GA) optimisation to select the best rotation-invariant uniform LBP configurations; Second, Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in the Neural Network (NN) ensemble to select the best combinations of voting weights of the predicted outcome for each classifier. The model obtained 87.9% accuracy in CWFID public benchmark

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Self-tune linear adaptive-genetic algorithm for feature selection

    Get PDF
    Genetic algorithm (GA) is an established machine learning technique used for heuristic optimisation purposes. However, this natural selection-based technique is prone to premature convergence, especially of the local optimum event. The presence of stagnant performance is due to low population diversity and fixed genetic operator setting. Therefore, an adaptive algorithm, the Self-Tune Linear Adaptive-GA (STLA-GA), is presented in order to avoid suboptimal solutions in feature selection case studies. STLA-GA performs parameter tuning for mutation probability rate, population size, maximum generation number and novel convergence threshold while simultaneously updating the stopping criteria by adopting an exploration-exploitation cycle. The exploration-exploitation cycle embedded in STLA-GA is a function of the latest classifier performance. Compared to standard feature selection practice, the proposed STLA-GA delivers multi-fold benefits, including overcoming local optimum solutions, yielding higher feature subset reduction rates, removing manual parameter tuning, eliminating premature convergence and preventing excessive computational cost, which is due to unstable parameter tuning feedback

    A Review of Fault Diagnosing Methods in Power Transmission Systems

    Get PDF
    Transient stability is important in power systems. Disturbances like faults need to be segregated to restore transient stability. A comprehensive review of fault diagnosing methods in the power transmission system is presented in this paper. Typically, voltage and current samples are deployed for analysis. Three tasks/topics; fault detection, classification, and location are presented separately to convey a more logical and comprehensive understanding of the concepts. Feature extractions, transformations with dimensionality reduction methods are discussed. Fault classification and location techniques largely use artificial intelligence (AI) and signal processing methods. After the discussion of overall methods and concepts, advancements and future aspects are discussed. Generalized strengths and weaknesses of different AI and machine learning-based algorithms are assessed. A comparison of different fault detection, classification, and location methods is also presented considering features, inputs, complexity, system used and results. This paper may serve as a guideline for the researchers to understand different methods and techniques in this field

    Performance Comparison of Hybrid CNN-SVM and CNN-XGBoost models in Concrete Crack Detection

    Get PDF
    Detection of cracks mainly has been a sort of essential step in visual inspection involved in construction engineering as it is the commonly used building material and cracks in them is an early sign of de-basement. It is hard to find cracks by a visual check for the massive structures. So, the development of crack detecting systems generally has been a critical issue. The utilization of contextual image processing in crack detection is constrained, as image data usually taken under real-world situations vary widely and also includes the complex modelling of cracks and the extraction of handcrafted features. Therefore the intent of this study is to address the above problem using two-hybrid machine learning models and classify the concrete digital images into having cracks or non-cracks. The Convolutional Neural Network is used in this study to extract features from concrete pictures and use the extracted features as inputs for other machine learning models, namely Support Vector Machines (SVMs) and Extreme Gradient Boosting (XGBoost). The proposed method is evaluated on a collection of 40000 real concrete images, and the experimental results show that application of XGBoost classifier to CNN extracted image features include an advantage over SVM approach in accuracy and achieve a relatively better performance than a few existing methods

    A microwave filter yield optimization method based on off-line surrogate model-assisted evolutionary algorithm

    Get PDF
    Most existing microwave filter yield optimization methods target a small number of sensitive design variables (e.g., around 5). However, for many real-world cases, more than ten sensitive design variables need to be considered. Due to the complexity, yield optimization quality and efficiency become challenges. Hence, a new method, called yield optimization for filters based on the surrogate model-assisted evolutionary algorithm (YSMA), is proposed. The fundamental idea of YSMA is to construct a single high-accuracy surrogate model offline, which fully replaces electromagnetic (EM) simulations in the entire yield optimization process. Global optimization is then enabled to find designs with substantial yield improvement efficiently using the surrogate model. To reduce the number of necessary samples (i.e., EM simulations) while obtaining the required prediction accuracy, a customized machine learning technique is proposed. The performance of YSMA is demonstrated by two real-world examples with 11 and 14 design variables, respectively. Experimental results show the advantages of YSMA compared to the current dominant sequential online surrogate model-based local optimization methods
    corecore